African Journal of
Microbiology Research

  • Abbreviation: Afr. J. Microbiol. Res.
  • Language: English
  • ISSN: 1996-0808
  • DOI: 10.5897/AJMR
  • Start Year: 2007
  • Published Articles: 5233

Review

Environmental stress conditions affecting the N2 fixing Rhizobium-legume symbiosis and adaptation mechanisms

Sara LEBRAZI
  • Sara LEBRAZI
  • Laboratory of Microbial Biotechnology, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, P. O. Box 2202, Imouzzer Road, Fez, Morocco
  • Google Scholar
Kawtar FIKRI BENBRAHIM*
  • Kawtar FIKRI BENBRAHIM*
  • Laboratory of Microbial Biotechnology, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, P. O. Box 2202, Imouzzer Road, Fez, Morocco
  • Google Scholar


  •  Received: 26 October 2014
  •  Accepted: 12 December 2014
  •  Published: 31 December 2014

References

Aaron SR, Graham PH (1991). Response of Rhizobium leguminosarum bv. phaseoli to acidity. Plant Soil. 134:145-151.

 

Abd-Alla MH, Issa AA, Ohyama T (2014). Impact of harsh environmental conditions on nodule formation and dinitrogen fixation of legumes. Advances in biology and ecology of nitrogen fixation. ISBN, pp. 978-953.

 
 

Abolhasani M, Lakzian A, Tajabadipour A, Haghnia G (2010). The study salt and drought tolerance of Sinorhizobium bacteria to the adaptation to alkaline condition. Aust. J. Basic Appl. Sci., 4(5): 882-886.

 
 

Aggarwal A, Kadian N, Karishma Neetu TA, Gupta KK (2012). Arbuscular mycorrhizal symbiosis and alleviation of salinity stress. J. Appl. Nat. Sci. 4(1):144-155.

 
 

Ahmad E, Zaidi A, Khan M. S, Oves M (2012). Heavy metal toxicity to symbiotic nitrogen-fixing microorganism and host legumes. Springer Vienna, pp. 29-44.
Crossref

 
 

Alexandre A, Oliveira S (2013). Response to temperature stress in rhizobia. Crit. Rev. Microbiol. 39(3):219-228.
Crossref

 
 

Brockwell J, Searle SD, Jeavons AC, Waayers M (2005). Nitrogen Fixation in Acacias: an Untapped Resource for Sustainable Plantations, Farm Forestry and Land Reclamation. Australian Centre for International Agricultural Research. p. 132.

 
 

Casteriano AV (2014). Physiological mechanisms of desiccation tolerance in Rhizobia. PhD Doctorate. University of Sydney.

 
 

Chanway CP, Anand R, Yang H (2014). Nitrogen Fixation Outside and Inside Plant Tissues, Advances in Biology and Ecology of Nitrogen Fixation, Prof. Takuji Ohyama (Ed.), ISBN: 978-953-51-1216-7, InTech.
Crossref

 
 

Cloutier J, Prévost D, Nadeau P, Antoun H (1992). Heat and cold shock protein synthesis in arctic and temperate strains of rhizobia. Appl. environ. microbiol. 58(9):2846-2853.
Pubmed

 
 

El-Hilali I (2006). Rhizobium-Lupine symbiosis: Micro-symbioses Biodiversity and highlighting of a multi nodular infection in Lupinus luteus. PhD Doctorate, University Mohammed V. Agdal., Rabat.

 
 

Farissi M, Bouizgare A, Aziz F, Faghire M, Ghoulam C (2014). Isolation and screening of rhizobial strains nodulating alfalfa for their tolerance to some environmental stresses. Pacesetter. J. Agric. Sci. Res. 2:9-19.

 
 

Ferrer M, Chernikova TN, YaKimov MM, Golyshin PN, Timmis KN (2003). Chaperonins govern growth of Escherichia coli at low temperatures. Nat. Biotechnol. 21:1266-1267.
Crossref

 
 

Foster JW (1993). The acid tolerance response of Salmonella typhimurium involves transient synthesis of key acid shock proteins. J. Bacteriol. 175(7):1981-1987.
Pubmed

 
 

Fujihara S, Yoneyama T (1993). Effects of pH and osmotic stress on cellular polyamine contents in the soybean Rhizobia fredii P220 and BradyRhizobium japonicum A1017. Appl. Environ. Microbiol. 59:1104-1109.
Pubmed

 
 

Gadd GM (1992). Metals and microorganisms: a problem of definition. FEMS Microbiol. Lett. 100:197-204.
Crossref

 
 

Giller EK, Witter E, Mc Grath SP (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soil: a review. Soil Biol. Biochem. 30:1389-1414.
Crossref

 
 

Graham PH (1992). Stress tolerance in Rhizobium and BradyRhizobium, and nodulation under adverse soil conditions. Can. J. Microbial. 38:475-484.
Crossref

 
 

Graham PH, Draeger K, Ferrey ML, Conroy MJ, Hammer BE, Martinez E, NaArons SR, Quinto C (1994). Acid pH tolerance in strains of Rhizobium and BradyRhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR1899. Can. J. Microbiol. 40:198-207.
Crossref

 
 

Gusmão AI, Caçoilo S, Figueira EM (2006) Glutathione-mediated cadmium sequestration in Rhizobium leguminosarum. Enzyme Microb. Technol. 39:763-769.
Crossref

 
 

Horn G, Hofweber R, Kremer W, Kalbitzer HR (2007). Structure and function of bacterial cold shock proteins. Cell. Mol. Life Sci. 64:1457-1470.
Crossref

 
 

Hungria M, Vargas MAT (2000). Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Res. 65:151-164.
Crossref

 
 

Hussain MB, Zahir ZA, Asghar HN, Asghar M (2014). Can catalase and exopolysaccharides producing rhizobia ameliorate drought stress in wheat?. Int. J. Agric. Biol. 16:3-13.

 
 

Jaleel CA, Manivanannan P, Wahid AM, Froog HJ, Al-Juburi R, Somasundaram R (2009). Drought stress in plant: A review on morphological characters and pigments composition. Int. J. Agric. Biol. 11:100-105.

 
 

Jordan DC (1984). Family III Rhizobiaceae Conn. 1938-254. In Krieg N.R, Holt J.G (eds.). Bergey's Mannual of Systematic Bacteriology. The Williams and WilkinsCo., Baltimore. 1:235-244.

 
 

Kim SY, Ayyadurai N, Heo MA, Park S, Jeong YJ, Lee SG (2009). Improving the productivity of recombinant protein in Escherichia coliunder thermal stress by coexpressing GroELS chaperone system. J. Microbiol. Biotechnol. 19:72-77.
Pubmed

 
 

Kinkema M, Scott PT, Gresshoff M (2006). Legume nodulation: successful symbiosis through short and long distance signaling. Func. Plant Biol. 33:707-721.

 
 

Lapez-Go'mez M, Palma E, Lluch C (2013). Strategies of Salt Tolerance in the Rhizobia-Legume Symbiosis. Beneficial Plant-microbial Interactions: Ecology and Applications. p. 99.

 
 

Laranjo M, Oliveira S (2011). Tolerance of MesoRhizobium type strains to different environmental stresses. Antonie Van Leeuwenhoek. 99:651-662.
Crossref

 
 

Ledin M (2000). Accumulation of metals by microorganisms-processes and importance for soil systems. Earth Sci. Rev. 51(1-4):1-31.
Crossref

 
 

Luci-ski R, Polcyn W, Ratajczak L (2002). Nitrate reduction and nitrogen fixation in symbiotic association Rhizobium-legumes. Acta Biochim. Pol. 49(2):537-546.

 
 

Mandal SM, Bhattacharyya R (2012). Rhizobium–Legume Symbiosis: A Model System for the Recovery of Metal-Contaminated Agricultural Land. Springer Vienna, pp. 115-127.

 
 

Mhadhbi H, Chihaoui S, Mhamdi R, Mnasri B, Jebara M (2011). A highly osmotolerant rhizobial strain confers a better tolerance of nitrogen fixation and enhances protective activities to nodules of Phaseolus vulgaris under drought stress. Afr. J. Biotechnol. 10(22):4555-4563.

 
 

Mohammadi K, Sohrabi Y, Heidari G, Khalesro S, Majidi M (2012). Effective factors on biological nitrogen fixation. Afr. J. Agric. Res. 7(12):1782-1788.

 
 

Nandal K, Sehrawat AR, Yadav AS, Vashishat RK, Boora KS (2005). High temperature-induced changes in exopolysaccharides, lipopolysaccharides and protein profile of heat-resistant mutants of Rhizobium sp. (Cajanus). Microbiol. Res. 160:367-373.
Crossref

 
 

Niste M, Vidican R, Pop R, Rotar I (2013). Stress factors affecting symbiosis activity and nitrogen fixation by Rhizobium cultured in vitro. ProEnvironment/ProMediu, 6(13):42-45.

 
 

Noel KD (2009). Rhizobia. In: Schaechter M (ed) Encyclopedia of microbiology, 3rd edn. Academic Press, New York, pp. 261-277.
Crossref

 
 

O'Connell KP, Thomashow MF (2000). Transcriptional organization and regulation of a polycistronic cold shock operon in Sinorhizobium meliloti RM1021 encoding homologs of the Escherichia coli major cold shock gene cspA and ribosomal protein gene rpsU. Appl. Environ. Microbiol. 66:392-400.
Crossref

 
 

Pajuelo E, Rodríguez-Llorente ID, Lafuente A, Caviedes MÁ (2011). Legume–Rhizobium symbioses as a tool for bioremediation of heavy metal polluted soils. In Biomanagement of metal-contaminated soils. Springer Netherlands, pp. 95-123.
Crossref

 
 

Pereira SIA, Lima AIG, Figueira EMAP (2008). Rhizobium leguminosarum isolated from agricultural ecosystems subjected to different climatic influences: the relation between genetic diversity, salt tolerance and nodulation efficiency. Soil Ecol. Res. Dev. Nova Science, New York, pp. 247-263.

 
 

Rodrigues C, Laranjo M, Oliveira S (2006). Effect of heat and pH stress in the growth of chickpea mesorhizobia. Curr. Microbiol. 53:1-7.
Crossref

 
 

Sadowsky MJ (2005). Soil stress factors influencing symbiotic nitrogen fixation, in: Werner D and Newton WE (Eds.) Nitrogen Fixation Research in Agriculture, Forestry, Ecol. Environ. Springer, Dordrecht,The Netherlands, pp. 89-102.
Crossref

 
 

Serrano A, Chamber M (1990). Nitrate reduction in Bradyrhizobium sp (Lupinus) strains and its effects on their symbiosis with Lupinus luteus. J. Plant Physiol. 136:240-246.
Crossref

 
 

Silver S, Phung LT (2005). A microbial view of the periodic table: genes and proteins for toxic inorganic ions. J. Ind. Microbiol. Biotechnol. 32:587-605.
Crossref

 
 

Sprent JI, Raven JA (1985). Evolution of nitrogen-fixing symbioses. Proceedings of the Royal Society of Edinburgh. Section B. Biol. Sci. 85(3-4):215-237.

 
 

Turk D, Keyser HH, Singleton PW (1993). Response of tree legumes to rhizobial inoculation in relation to the population density of indigenous rhizobia. Soil Biol. Biochem. 25(1):75-81.
Crossref

 
 

Ventorino V, Caputo R, De Pascale S, Fagnano M, Pepe O, Moschetti G (2012). Response to salinity stress of Rhizobium leguminosarum bv. viciae strains in the presence of different legume host plants. Ann. Microbiol. 62(2):811-823.
Crossref

 
 

Vriezen JAC, de Bruijn FJ, Nüsslein K (2007). Responses of rhizobia to desiccation in relation to osmotic stress, oxygen and temperature. Appl. Environ. Microbiol. 73(11):3451-3459.
Crossref

 
 

Wahab AA., Zahran HH, Abd-Alla MH (1996). Root-hair infection and nodulation of four grain legumes as affected by the form and the application time of nitrogen fertilizer. Folia microbial. 41(4):303-308.

 
 

Yang J, Kloepper JW, Ryu CM (2009). Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 14:1-4
Crossref

 
 

Yura T, Kanemori M, Morita MT (2000). The Heat shock response: regulation and function, In G. Storz and R. Hengge-Aronis (ed.), Bacterial stress responses. ASM Press, Washington, D.C., pp. 3-18.

 
 

Zahran HH (1999). Rhizobium-Legume Symbiosis and Nitrogen Fixation under Severe Conditions and in an Arid Climate. Microbiol. Mol. Biol. Rev. 63:968-989.
Pubmed

 
 

Zahran HH (2001). Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and Biotechnology. J. Biotechnol. 91:143-153.
Crossref

 
 

Zahran HH, Rasanen LA, Karsisto M, Lindstrom K (1994). Alteration of lipopolysaccharide and protein profiles in SDS-PAGE of rhizobia by osmotic and heat stress. World J. Microbiol. Biotechnol. 10:100-105.
Crossref

 
 

Zerhari K, Aurag J, Khbaya B, Kharchaf D, Filali‐Maltouf A (2000). Phenotypic characteristics of rhizobia isolates nodulating Acacia species in the arid and Saharan regions of Morocco. Lett. Appl. Microbiol. 30(5):351-357.
Crossref