African Journal of
Microbiology Research

  • Abbreviation: Afr. J. Microbiol. Res.
  • Language: English
  • ISSN: 1996-0808
  • DOI: 10.5897/AJMR
  • Start Year: 2007
  • Published Articles: 5233

Full Length Research Paper

Fibrolytic enzyme production of Myceliophthora thermophila M.7.7. using inexpensive carbon sources and mineral nutrients

Marcia Maria de Souza Moretti*
  • Marcia Maria de Souza Moretti*
  • Laboratory of Biochemistry and Applied Microbiology, Sao Paulo State University-Unesp, IBILCE, Sao Jose do Rio Preto, Sao Paulo, Brazil
  • Google Scholar
Emily Colferai Bonfa
  • Emily Colferai Bonfa
  • Laboratory of Biochemistry and Applied Microbiology, Sao Paulo State University-Unesp, IBILCE, Sao Jose do Rio Preto, Sao Paulo, Brazil
  • Google Scholar
Maria Cecilia Maia Chierotti
  • Maria Cecilia Maia Chierotti
  • Laboratory of Biochemistry and Applied Microbiology, Sao Paulo State University-Unesp, IBILCE, Sao Jose do Rio Preto, Sao Paulo, Brazil
  • Google Scholar
Ariane Priscila Movio
  • Ariane Priscila Movio
  • Laboratory of Biochemistry and Applied Microbiology, Sao Paulo State University-Unesp, IBILCE, Sao Jose do Rio Preto, Sao Paulo, Brazil
  • Google Scholar
Roberto da Silva
  • Roberto da Silva
  • Laboratory of Biochemistry and Applied Microbiology, Sao Paulo State University-Unesp, IBILCE, Sao Jose do Rio Preto, Sao Paulo, Brazil
  • Google Scholar
Eleni Gomes
  • Eleni Gomes
  • Laboratory of Biochemistry and Applied Microbiology, Sao Paulo State University-Unesp, IBILCE, Sao Jose do Rio Preto, Sao Paulo, Brazil
  • Google Scholar


  •  Received: 23 September 2014
  •  Accepted: 01 December 2014
  •  Published: 24 December 2014

References

Badhan AK, Chadha BS, Kaur J, Saini HS, Bhat MK (2007). Production of multiple xylanolytic and cellulolytic enzymes by thermophilic fungus Myceliophthora sp. IMI 387099. Bioresour. Technol. 98: 504-510.
Crossref

 

Danmek K, Intawicha P, Thana S, Sorachakula C, Meijer M, Samson RA (2014). Characterization of cellulase producing from Aspergillus melleus by solid state fermentation using maize crop residues. Afr. J. Microbiol. Res. 8:2397-2404.
Crossref

 
 

Fang TJ, Liao BC, Lee SC (2010). Enhanced production of xylanase by Aspergillus carneus M34 in solid-state fermentation with agricultural waste using statistical approach. N. Biotechnol. 27:25-32.
Crossref

 
 

Gao J, Weng H, Zhu D, Yuan M, Guan F, Xi Y (2008). Production and characterization of cellulolytic enzymes from the thermoacidophlilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Bioresour. Technol. 99:7623-7629.
Crossref

 
 

Gautam SP, Bundela PS, Pandey AK, Khan J, Awasthi MK, Sarsaiya S (2011). Optimization for the production of cellulase enzyme from municipal solid waste residue by two novel cellulolytic fungi. Biotechnol. Res. Int. 2011:1-8.
Crossref

 
 

Gomes E, Aguiar AP, Boscolo M, Carvalho CC, Silva R, Bonfá MRB (2009). Ligninases production by basidiomicetes strains on lignocellulosic agricultural residues and decolorization of synthetic dyes. Braz. J. Microbiol. 40:31-39.
Crossref

 
 

Huang X, Ge J, Fan J, Chen X, Xu X, Li J, Zhang Y, Zhou D (2013). Characterization and optimization of xylanase and endoglucanase production by Trichoderma viride HG 623 using response surface methodology (RSM). Afr. J. Microbiol. Res. 7:4521-4532.

Academic Journals

 
 

Jecu L (2000). Solid state fermentation of agricultural wastes for endoglucanase production. Ind. Crops Prod. 11:1-5.
Crossref

 
 

Kalogeris E, Christakopoulos P, Katapodis P, Alexiou A, Vlachou S, Kekos D, Macris BJ (2003). Production and characterization of cellulolytic enzymes from the thermophilic fungus Thermoascus aurantiacus under solid state cultivation of agricultural wastes. Process. Biochem. 38:1099-1104.
Crossref

 
 

Laemmli UK (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685.
Crossref

 
 

Lakshmia S, Rao CS, Rao RS, Hobbsb PJ, Prakashama RS (2009). Enhanced production of xylanase by a newly isolated Aspergillus terreus under solid state fermentation using palm industrial waste: A statistical optimization. Biochem. Eng. J. 48:41-47.

 
 

Leite RSR, Alves-Prado HF, Cabral H, Pagnocca FC, Gomes E, Da-Silva R (2008). Production and characteristics comparison of crude β-glucosidase produced by microorganisms Thermoascus aurantiacus and Aureobasidium pullulans in agricultural wastes. Enzyme Microb. Technol. 43:391-395.
Crossref

 
 

Longwei G, Hongman C, Huihui W, Guoshi K, Daming R (2014). Optimization of solid-state fermentation conditions for the production of cellulase and its hydrolytic potentials by Trichoderma virride Sn-9106. Afr. J. Microbiol. Res. 8:4521-4532.

Academic Journals

 
 

Lonsane BK, Ghildyal NP, Ramakrishna SV (1985). Engineering aspects of pectolytic solid state fermentation. Enzyme Microb. Technol. 7:258-265.
Crossref

 
 

Mandels M, Sternberg D (1976). Recent advances in cellulases technology. J. Ferment. Technol. 54:267-286.

 
 

Martin N, Guez MAU, Sette LD, Da Silva R, Gomes E (2010). Pectinase production by a Brazilian thermophilic fungus Thermomucor indicae_seudaticae N31 in solid_state and submerged fermentation. Microbiology 79:306-313.
Crossref

 
 

Miller GL (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31:426-428.
Crossref

 
 

Moretti MMS, Bocchini-Martins DA, Da Silva R, Rodrigues A, Sette LD, Gomes E (2012). Selection of thermophilic and thermotolerant fungi for the production of cellulases and xylanases under solid-state fermentation. Braz. J. Microbiol. 43:1062-1071.
Crossref

 
 

Panagiotous G, Kekos D, Macris BJ, Christakopoulos P (2003). Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Ind. Crops Prod. 18:37-45.
Crossref

 
 

Roy SK, Raha SK, Dey SK, Chakrabarty SL (1990). Effect of temperature on the production and location of cellulase components in Myceliophthora thermophila D-14 (ATCC 48104) Enzyme Microb. Technol. 12: 710-713.
Crossref

 
 

Silva TM, Silva R, Angelis DA, Boscolo M, Gomes E (2005). Production of saccharogenic and dextrinogenic amylases by Rhizomucor pusillus A 13.36. J. Microbiol. 43: 561-568.
Pubmed

 
 

Singh S, Tyagi CH, Dutt D, Upadhyaya JS (2009). Production of high level of cellulase-poor xylanases by wild strains of white-rot fungus Coprinellus disseminatus in solid-state fermentation. N. Biotechnol. 26:165-170.
Crossref

 
 

Sohail M, Siddiqi R, Ahmad A, Khan SA (2009). Cellulase production from Aspergillus niger MS82: effect of temperature and pH. N. Biotechnol. 25:437-441.
Crossref

 
 

Soni R, Nazir A, Chadha BS (2010). Optimization of cellulase production by a versatile Aspergillus fumigatus fresenius strain (AMA) capable of efficient deinking and enzymatic hydrolysis of Solka floc and bagasse. Ind. Crops Prod. 31:277-283.
Crossref

 
 

Su Y, Zhang X, Hou Z, Zhu X, Guo X, Ling P (2011). Improvement of xylanase production by thermophilic fungus Thermomyces lanuginosus SDYKY-1 using response surface methodology. N. Biotechnol. 28:40-46.
Crossref

 
 

Xiong H, von Weymarn N, Leisola M, Turunen O (2004). Influence of pH on the production of xylanases by Trichoderma reesei Rut C-30. Process Biochem. 39:729-733.
Crossref