African Journal of
Microbiology Research

  • Abbreviation: Afr. J. Microbiol. Res.
  • Language: English
  • ISSN: 1996-0808
  • DOI: 10.5897/AJMR
  • Start Year: 2007
  • Published Articles: 5233

Full Length Research Paper

Engineered microbial consortium for the efficient conversion of biomass to biofuels: A preliminary study

Ugochukwu Anieto
  • Ugochukwu Anieto
  • Department of Biological Sciences, University of North Texas, Denton 76203, TX, USA.
  • Google Scholar


  •  Received: 15 October 2016
  •  Accepted: 05 January 2017
  •  Published: 21 January 2017

References

Abate C, Callieri D, Rodriguez E, Garro O (1996). Ethanol production by a mixed culture of flocculent strains of Zymomonas mobilis and Saccharomyces sp. Appl. Microbiol. Biol. 45(5):580-583.
Crossref

 

Bayer TS, Widmaier DM, Temme K, Mirsky EA, Santi DV, Voigt CA (2009). Synthesis of Methyl Halides from Biomass Using Engineered Microbes. J. Am. Chem. Soc. 131(18):6508-6515.
Crossref

 

Deanda K, Zhang M, Eddy C, Picataggio S (1996). Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl. Environ. Microbiol. 62(12):4465-4470.

 

Desvaux M (2005). The cellulosome of Clostridium cellulolyticum. Enzym. Microb. Technol. 37(4):373-385.
Crossref

 

Dunn KL, Rao CV (2014). Expression of a xylose-specific transporter improves ethanol production by metabolically engineered Zymomonas mobilis. Appl. Microbiol. Biotechnol. 98(15):6897-6905.
Crossref

 

Fu N, Peiris P, Markham J, Bavor J (2009). A novel co-culture process with Zymomonas mobilis and Pichia stipitis for efficient ethanol production on glucose/xylose mixtures. Enzym. Microbiol. Technol. 45(3):210-217.
Crossref

 

Giallo J, Gaudin C, Belaich JP, Petitdemange H, Caillet-Mangin F (1983). Metabolism of glucose and cellobiose by cellulolytic mesophilic Clostridium sp. strain H10. Appl. Environ. Microbiol. 45(3):843-849.

 

Guedon E, Dexvaux M, Payot S, Petitdemange H (1999). Growth inhibition of Clostridium cellulolyticum by an inefficiently regulated carbon flow. Microbiology 145(8):1831-1838.
Crossref

 

Gunasekeran P, Karunakaran T, Nellaiah H, Kamini N.R, Mukundan A.G (1990). Current status and prospective of an ethanol producer, Zymomonas mobilis. Indian J. Microbiol 30: 107-133.

 

He Q, Hemme C.L, Jiang H, He Z, Zhou J (2011). Mechanisms of enhanced cellulosic bioethanol fermentation by co-cultivation of Clostridium and Thermoanaerobacter spp. Bioresour. Technol. 102(20):9586-9592.
Crossref

 

Ho Q, Chang JJ, Lin JJ, Chin TY, Matthew GM, Huang CC (2011). Establishment of functional rumen bacterial consortia (FRBC) for simultaneous biohydrogen and bioethanol production from lignocellulose. Int. J. Hydrogen Energ. 36(19):12168-12176.
Crossref

 

Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Loop RM, Peterson KM (1995). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166(1):175-176.
Crossref

 

Li Y, Park J-Y, Shiroma R, Tokuyasu K (2011). Bioethanol production from rice straw by a sequential use of Saccharomyces cerevisiae and Pichia stipitis with heat inactivation of Saccharomyces cerevisiae cells prior to xylose fermentation. J. Biosci. Bioeng. 111(6): 682-686.
Crossref

 

Liang CC, Lee WC (1998). Characteristics and transformation of Zymomonas mobilis with plasmid pKT230 by electroporation. Bioprocess Eng. 19(2):81-85.
Crossref

 

Luo Z, Bao J (2015). Secretive expression of heterologous β-glucosidase in Zymomonas mobilis. Bioresour. Bioprocess. 2:1-6.
Crossref

 

Payot S, Guedon E, Cailliez C, Gelhaye E, Petitdemange H (1998). Metabolism of cellobiose by cellulolytic mesophilic Clostridium sp. strain H10. Appl. Environ. Microbiol. 45(3):843-849.

 

Petitdemange E, Caillet F, Giallo J, Gaudin C (1984). Clostridium cellulolyticum sp. nov, a Cellulolytic, Mesophilic Species from Decayed Grass. Int. J. Syst. Bacteriol. 34:155-159.
Crossref

 

Quinn BM, Apolinario EA, Gross A, Sowers KR (2016). Characterization of a microbial consortium that converts mariculture fish waste to biomethane. Aquaculture 453:154-162.
Crossref

 

Reddy OV, Basappa SC (1996). Direct fermentation of cassava starch to ethanol by mixed cultures of Endomycopsis fibuligera and Zymomonas mobilis; Synergism and limitation. Biotechnol. Lett. 18(11):1315-1318.
Crossref

 

Senthikumar V, Gunasekaran P (2005). Bioethanol production from cellulosic substrates: Engineered bacteria and process integration challenges. J. Sci. Ind. Res. India 64(11):845-853.

 

Shin HD, McClendon S, Vo T, Chen R.R (2010). Escherichia coli Binary Cultured Engineered for Direct Fermentation of Hemicellulose to a Biofuel. Appl. Environ. Microbiol. 76(24):8150-8159.
Crossref

 

Shou W, Ram S, Vilar J.M.G (2007). Synthetic cooperation in engineered yeast populations. Proc. Natl. Acad. Sci. U.S.A 104(6): 1877-1882.
Crossref

 

Singh LK, Majumder CB, Ghosh S (2014). Development of sequential co-culture system (Pichia stipitis and Zymomonas mobilis) for ethanol production from Kans grass biomass. Biochem. Eng. J. 82: 150-157.
Crossref

 

Weir PM (2016). The ecology of Zymomonas: a review. Folia Microbiol (Praha) 61:385-392.
Crossref

 

Yanase H, Nozaki K, Okamoto K (2005). Ethanol production from cellulosic materials by genetically engineered Zymomonas mobilis. Biotechnol. Lett. 27(4):259-263.
Crossref

 

Yanase H, Miyawaki H, Sakurai M, Kawakami A, Matsumoto M, Haga K, Kojima M, Okamoto K (2012). Ethanol production from wood hydrolysate using genetically engineered Zymomonas mobilis. Appl. Microbiol. Biotechnol. 94(6):1667-1678.
Crossref

 

Yang S, Fei Q, Zhang Y, Contreras L.M, Utturkar S.D, Himmel M.E, Zhang M (2016). Zymomonas mobilis as a model system for production of biofuels and biochemical. Microbiol. Biotechnol. 9(6):699-717.
Crossref

 

Yaun X, Ma L, Wen B, Zhou D, Kuang M, Yang W, Cui Z (2016). Enhancing anaerobic digestion of cotton stalk by pretreatment with a microbial consortium (MC1). Bioresour. Technol. 207:293-301.
Crossref

 

Zhang SC, Lai QH, Lu Y, Liu ZD, Wang TM, Zhang C, Xing XH (2016a). Enhanced biohydrogen production from corn stover by the combination of Clostridium cellulolyticum and hydrogen fermentation bacteria. J. Biosci. Bioeng. 122:482-487.
Crossref

 

Zhang H, Zhang P, Ye J, Wu Y, Fang W, Gou X, Zeng G (2016b). Improvement of methane production from rice straw with rumen fluid pretreatment. A feasibility study. Int. J. Biodeterior. Biodegr. 113:9-16.
Crossref

 

Zhong C, Wang C, Wang F, Jia H, Wei P, Zhao W (2016). Enhanced biogas production from wheat straw with the application of synergistic microbial consortium pretreatment. RSC Adv. 6:60187-60195.
Crossref