African Journal of
Microbiology Research

  • Abbreviation: Afr. J. Microbiol. Res.
  • Language: English
  • ISSN: 1996-0808
  • DOI: 10.5897/AJMR
  • Start Year: 2007
  • Published Articles: 5233

Full Length Research Paper

Biosynthesis of indole-3-acetic acid by plant growth promoting rhizobacteria, Klebsiella pneumonia, Bacillus amyloliquefaciens and Bacillus subtilis

Vijendra Kumar Mishra*
  • Vijendra Kumar Mishra*
  • Microbial Biotechnology Unit, School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi-221005, (U.P), India
  • Google Scholar
Ashok Kumar
  • Ashok Kumar
  • Microbial Biotechnology Unit, School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi-221005, (U.P), India
  • Google Scholar


  •  Received: 06 May 2015
  •  Published: 22 April 2015

References

Ahemad M, Kibret K (2013). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud Univ. Sci. 26:1-20.
Crossref

 

Baker GC, Smith JJ, Cowan DA (2003). Review and re-analysis of domain-specific 16S primers. J. Microbiol. Methods 55:541-555.
Crossref

 
 

Barraquio WL, Segubre EM, Gonzalez MS, Verma SC, James EK, Ladha JK, Tripathi AK (2000). Diazotrophic Enterobacteria: what is their role in rhizosphere of rice? In: J.K. Ladha and P.M. Reddy, Editors, The Quest for Nitrogen Fixation in Rice, Los Banos, Philippines. pp. 93-118.

 
 

Bhattacharya RN, Basu PS (1992). Bioproduction of indole acetic acid by a Rhizobium sp from root nodules of a leguminous climer, Psophocarpus Tetragonolobus dc. Indian J. Exper. Biol. 30:632-635.

 
 

Bhowmik PK, Basu PS (1994). Contents of hormones and IAA metabolism in root nodule of Erythrina indica Lamk., S. grandiflora Pers. and Pterocarpus santalinus Linn. Biochemica Physioligie-der-pflanzen. 179:455-462.
Crossref

 
 

Boylan SA, Redfield AR, Brody MS, Price CW (1993). Stress-Induced Activation of the σB Transcription Factor of Bacillus subtilis. J. Bacteriol. 175(24):7931-7937.
Pubmed

 
 

Chakravorty S, Helb D, Burday M, Connell N, Alland D (2007). A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J. Microbiol Methods 69:330-339.
Crossref

 
 

Coughlan MP, Mayer F (1992). The cellulose-decomposing bacteria and their enzyme systems. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer K, editors. The prokaryotes. A handbook on the biology of bacteria. ecophysiology, isolation, identification, applications, vol. I. 2nd ed. Berlin, Germany: Springer-Verlag. pp. 460-516.

 
 

Dobbereinere S A, Croonenborghs M, Thys A, Ptacek D, Vanderleyden J (2001). Response of agronomically important crops to inoculation with Azospirillum. Australian J. Plant Physiol. 28:871-879.

 
 

Dobereiner J (1995). Isolation and identification of aerobic N2-fixing bacteria from soil and plants. In: Methods in Applied Soil Microbiology and Biochemistry, (K. Alef and P. Nannipieri Eds.) Academic Press, London. pp: 134-141.

 
 

Duca D, Lorv J, Patten CL, Rose D, Glick BR (2014). Indole-3-acetic acid in plant-microbe interactions. Antonie Leeuwenhoek 106(1):85-125.
Crossref

 
 

Eckert B, Weber OB, Kirchhof G, Halbritter A, Stoffels M, Hartmann A (2001). Azospirillum doebereinerae sp. A nitrogen-fixing bacterium associated with the C4-grass Miscanthus. Int. J. Syst. Evol. Microbiol. 51:17-26.
PMid:11211255

 
 

Elgaml A, Hassan R, Barwa R, Shokralla S, El-Naggar W (2013). Analysis of 16S ribosomal RNA gene segments for the diagnosis of Gram negative pathogenc bacteria isolated from urinary tract infections. Afr. J. Microbiol. Res. 7(23):2862-2869.

 
 

El-khawas H, Adachi K (1999). Identification and quantification of auxins in culture media of Azospirillum and Klebsiella and their effect on rice roots. Biol. Fertil. Soil 28:377-381.
Crossref

 
 

Emtiazi G, Pooyan M, Shamalnasab M (2007). Cellulase Activities in Nitrogen Fixing Paenibacillus Isolated from Soil in N-free Media. World J. Agric. Sci. 5: 602-608.

 
 

Femi-Ola TO, Aderibigbe EY (2008). Studies on the effect of some wood extracts on growth and celluase production by strains of Bacillus subtilis. Asian J. Plant Sci. 1-3.
Crossref

 
 

Frankenberger WT, Arshad M (1995). Phytohormones in soils: Microbial production and function. Marcel Dekker Inc. N Y. 503.

 
 

Gordon SA, Weber RP (1951). Colorimetric estimation of indole acetic acid. Plant Physiol. 26:192-195.
Crossref

 
 

Idris EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borriss R (2002). Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148: 2097-2109.

 
 

Ikeda Z, Kobavashi T, Takahashi H, Jyunichi I, Kobayasi M, Tkashashi E (1989). The effect of salt stress on growth, IAA productivity and extracellular polysaccharides productivity of Rhizobium meliloti and other Rhizobium sp. Jpn. J. soil. Sci Sci. Soil Manure Plant Nutr. 60:41-46.

 
 

Kirchhof G, Eckert B, Stoffels M, Baldani JI, Reis VM, Hartmann A (2001). Herbaspirillum frisingense sp. nov., a new nitrogen-fixing bacterial species that occurs in C4-fibre plants. Int. J. Syst. Evol. Microbiol. 51:157-168.
Pubmed

 
 

Koga J, Adachi T, Hiaka H (1991). IAA biosynthetic pathway from tryptophan via indole-3-pyruvic acid in Enterobacter cloacae. Agric. Biol. Chem. 55:701-706.
Crossref

 
 

Manulis S, Shafrir H, Epstein E, Lichter A, Barash I (1994). Biosynthesis of IAA via the indole-3-acetamide pathway in Streptomyces spp. Microbiology 140:1045-1050.
Crossref

 
 

Mishra VK, Kumar A (2012). Plant growth promoting and phytostimulatory potential of Bacillus subtilis and Bacillus amyloliquefaciens. J. Agric. Biol. Sci. 7 (7): 509-512.

 
 

Park YW, Lim ST, Cho SJ, Dae H, Yun HD (1997). Characterization of Erwinia carotovora subsp. Carotovora LY34 endo-1,4-b-Glucanase Genes and Rapid Identification of Their Gene Products. Biochem. Biophys. Res. Commun. 241:636-641.
Crossref

 
 

Patten CL, Glick BR (2002). Role of Pseudomonas putida Indole acetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68(8):3795-3801.
Crossref

 
 

Saharan BS, Nehra V (2011). Plant growth promoting rhizobacteria: A Critical Review. Life Sci. Med. Res. 2011(21):1-30.

 
 

Sainio EL, Pulkki K, Young SN (1996). L-Tryptophan: Biochemical, nutritional and pharmacological aspects. Amino Acids 10:21-47.
Crossref

 
 

Sambrook J, Fritsch EF, Maniatis T (1989). Molecular cloning: A Laboratory Manual Cold Spring Harbour Laboratory, N Y.

 
 

Spaepen S, Vanderleyden J, Remans R (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 1-24.
Crossref

 
 

Strzelczyk E, Kampert M, Pachlewski R (1994). The influence of pH and temperature on ethylene production by mycorrhizal fungi of pine. Mycorrhiza 4:193-196.
Crossref

 
 

Tatum EL, Bonner DM (1944). Indole and serine in the biosynthesis and breakdown of tryptophan, Proc. Nat. Acad. Sci. USA. 30:30-37.
Crossref

 
 

Tyler HL, Triplett EW (2008). Plants as a habitat for beneficial and/or human pathogenic bacteria. Ann. Rev. Phytopathol. 46: 53-73.
Crossref

 
 

Woodward AW, Bartel B (2005). Auxin: Regulation, Action, and Interaction. Ann. Bot. (Lond) 95:707-735.
Crossref

 
 

Yamada T, Tsukamopto H, Shrraishi T, Nomura T, Oku H (1990). Detection of IAA biosynthesis in some species of taphrina causing hyperplasic diseases in plants. Ann. Phytopathol. Soc. Jpn. 56:532-540.
Crossref

 
 

Zakharova EA, Iosipenko AD, Ignatov VV (2000). Effect of water-soluble vitamins on the production of indole-3-acetic acid by Azospirillum brasilense. Microbiol. Res. 155:209-214.
Crossref