African Journal of
Microbiology Research

  • Abbreviation: Afr. J. Microbiol. Res.
  • Language: English
  • ISSN: 1996-0808
  • DOI: 10.5897/AJMR
  • Start Year: 2007
  • Published Articles: 5234

Review

Recent developments and future prospects of extremozymes in detergent applications

Abdullah A. Al-Ghanayem
  • Abdullah A. Al-Ghanayem
  • Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Kingdom of Saudi Arabia.
  • Google Scholar


  •  Received: 09 June 2024
  •  Accepted: 16 August 2024
  •  Published: 31 August 2024

References

Adams MW, Perler FB, Kelly RM (1995). Extremozymes: expanding the limits of biocatalysis. Biotechnology 13:662-668.
Crossref

 

Aggarwal R, Dutta T, Sheikh J (2020). Extraction of pectinase from Candida isolated from textile mill effluent and its application in bio-scouring of cotton. Sustainable Chemistry and Pharmacy 17:100291.
Crossref

 

Albayati SH, Nezhad NG, Taki AG, Rahman RNZRA (2024). Efficient and easible biocatalysts: Strategies for enzyme improvement. A review. International Journal of Biological Macromolecules 276(2):133978.
Crossref

 

Al-Darkazali H, Meevootisom V, Isarangkul D, Wiyakrutta S (2017). Gene expression and molecular characterization of a xylanase from chicken cecum metagenome. International Journal of Microbiology Article ID 4018398.
Crossref

 

Al-Ghanayem AA, Joseph B (2020). Current prospective in using cold-active enzymes as eco-friendly detergent additive. Applied Microbiology Biotechnology 104:2871-2882.
Crossref

 

Ara K, Saeki K, Igarashi K, Takaiwa M, Uemura T, Hagihara H, Kawai S, Ito S (1995). Purification and characterization of an alkaline amylopullulanase with both α-1,4 and α-1,6 hydrolytic activity from alkalophilic Bacillus spp. KSM-1378. Biochimica et Biophysica Acta 1243(3):315-324.
Crossref

 

Arabaci N, Arikan B (2018). Isolation and characterization of a cold-active, alkaline, detergent stable α-amylase from a novel bacterium B. subtilis N8. Preparative Biochemistry & Biotechnology 48(5):419-426.
Crossref

 

Arnling BJ, Martínez-Abad A, Berglund J, Larsbrink J, Vilaplana F, Olsson L (2018). Mannanase hydrolysis of spruce galactoglucomannan focusing on the influence of acetylation on enzymatic mannan degradation. Biotechnology for Biofuels 11:114.
Crossref

 

Aruna V, Chandrakala V, Angajala G, Nagarajan ER (2023). Proteases: An overview on its recent industrial developments and current scenario in the revolution of biocatalysis. Materials Today: Proceedings 1(92):565-573.
Crossref

 

Baghel VS, Tripathi RD, Ramteke PW, Gopal K, Dwivedi S, Rai UN, Singh SN (2005). Psychrotrophic proteolytic bacteria from cold environment of Gangotri glacier, Western Himalaya, India. Enzyme Microbial Technology 36(5-6):654-659.
Crossref

 

Behera SS, Ray RC (2016). Solid state fermentation for production of microbial cellulases: Recent advances and improvement strategies. International Journal Biological Macromolecules 86:656-69.
Crossref

 

Bermudez-Garcia E, Pena-Montes C, Castro-Rodriguez JA, Gonzalez-Canto A, Navarro-Ocana A, Farres A (2017). ANCUT2, a Thermo-alkaline cutinase from Aspergillus nidulans and its potential applications. Applied Biochemistry Biotechnology 182:1014-1036.
Crossref

 

Bhatt HB, Sani RK, Amoozegar MA, Singh SP (2024). Editorial: Extremozymes: characteristics, structure, protein engineering and applications. Frontiers in Microbiology 15:1423463.
Crossref

 

Bhardwaj N, Kumar B, Verma P (2019). A detailed overview of xylanases: an emerging biomolecule for current and future prospective. Bioresources and Bioprocessing 6:40.
Crossref

 

Brissos V, Eggert T, Cabral JM, Jaeger KE (2008). Improving activity and stability of cutinase towards the anionic detergent AOT by complete saturation mutagenesis. Protein Engineering, Design & Selection: PEDS 21(6):387?393.
Crossref

 

Cabrera MÁ, Blamey JM (2018). Biotechnological applications of archaeal enzymes from extreme environments. Biological Research 51(1):37.
Crossref

 

Carrasco M, Rozas JM, Alcaíno J, Cifuentes V, Baeza M. (2019). Pectinase secreted by psychrotolerant fungi: identification, molecular characterization and heterologous expression of a cold-active polygalacturonase from Tetracladium spp. Microbial Cell Factories 18: 45.
Crossref

 

Chandra MR, Lee YS, Park IH, Zhou Y, Kim KK, Choi YL (2011). Isolation, purification and characterization of a thermostable β-mannanase from Paenibacillus spp. DZ3. Journal of the Korean Society for Applied Biological Chemistry 54:325-331.
Crossref

 

Chapman J, Ismail AE, Dinu CZ (2018). Industrial Applications of Enzymes: Recent Advances, Techniques, and Outlooks. Catalysts 8:238.
Crossref

 

Chauhan PS, Sharma P, Puri N, Gupta N (2014). Purification and characterization of an alkali-thermostable β-mannanase from Bacillus nealsonii PN-11 and its application in mannooligosaccharides preparation having prebiotic potential. European Food Research and Technology 238:927-936.
Crossref

 

Chen S, Su L, Billig S, Zimmermann W, Chen J, Wu J (2010). Biochemical characterization of the cutinases from Thermobifida fusca. Journal of Molecular Catalysis B: Enzymatic 63:121-127.
Crossref

 

Chen S, Su L, Chen J, Wu J (2013). Cutinase: characteristics, preparation, and application. Biotechnology Advances 31(8):1754-1767.
Crossref

 

Cherif S, Mnif S, Hadrich F, Abdelkafi S, Sayadi S (2011). A newly high alkaline lipase: an ideal choice for application in detergent formulations. Lipids in Health and Disease 10:221.
Crossref

 

Coker JA (2016). Extremophiles and biotechnology: current uses and prospects. F1000Research, 5, F1000 Faculty Rev-396.
Crossref

 

David A, Singh CP, Kumar A, Angural S, Kumar D, Puri N, Gupta N (2018). Coproduction of protease and mannanase from Bacillus nealsonii PN-11 in solid state fermentation and their combined application as detergent additives. International Journal of Biological Macromolecules 108:1176-1184.
Crossref

 

de Lourdes Moreno M, Pérez D, García MT, Mellado E (2013). Halophilic bacteria as a source of novel hydrolytic enzymes. Life (Basel, Switzerland) 3(1):38-51.
Crossref

 

Dhawan S, Kaur J (2007). Microbial mannanases: an overview of production and applications. Critical Reviews in Biotechnology 27(4):197?216.
Crossref

 

Dhawan S (2021). Purification of a Thermostable β-mannanase from Paenibacillus Thiaminolyticus-characterization and its Potential Use as a Detergent Additive. Journal of Pure and Applied Microbiology 15(1):368-381.
Crossref

 

Dutta K, Sen S, Veeranki VD (2009). Production, characterization and applications of microbial cutinases. Process Biochemistry 44:127-134.
Crossref

 

Egmond MR, Bemmel van CJ (1997). Impact of structural information on understanding lipolytic function. In: Rubin B, Dennis EA (Eds). Methods in Enzymology, Vol. 284. Academic Press, New York pp. 119-129.
Crossref

 

Furhana J, Awasthib P, Sharmaa S (2019). Biochemical characterization and homology modelling of cold-active alkophilic protease from Northwestern Himalayas and its application in detergent industry. Biocatalysis and Agricultural Biotechnology 17:726-735.
Crossref

 

Grandview Research (2019). Enzyme market size share and trends analysis report by product (carbohydrase, protease, lipases) by application (industrial, specialty) by end use, by region and segment forcasts 2019-2025 report. ID978-1-68038-022-4.
Crossref

 

Haile S, Ayele A (2022). Pectinase from Microorganisms and Its Industrial Applications. The Scientific World Journal 1881305.
Crossref

 

Hasan F, Shah AA, Javed S, Hameed A (2010). Enzymes used in detergents: Lipases. African Journal Biotechnology 9(31):4836-4844.

 

Hatada YK, Saito H, Hagihara KO, Ito S (2001). Nucleotide and deduced amino acid sequences of an alkaline pullulanase from the alkaliphilic bacterium Bacillus spp. KSM-1876. Biochimica et Biophysica Acta 1545(1-2): 367-371.
Crossref

 

Hii SL, Tan JS, Ling TC, Ariff AB (2012). Pullulanase: role in starch hydrolysis and potential industrial applications. Enzyme Research 921362.
Crossref

 

Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG (2012). Novel enzymes for the degradation of cellulose. Biotechnology for biofuels 5(1):45.
Crossref

 

Huang H, Lin Y, Wang G, Lin J (2020). Gene cloning, expression and biochemical characterization of a new multi-domain, halotolerant and SDS-resistant alkaline pullulanase from Alkalibacterium spp. SL3. Process Biochemistry 96:1-10.
Crossref

 

Ismail SA, Hassan AA, Emran MA (2019). Economic production of thermo-active endo β-mannanase for the removal of food stain and production of antioxidant manno-oligosaccharides. Biocatalysis and Agriculture Biotechnology 22:101387.
Crossref

 

Jakob F, Martinez R, Mandawe J, Hellmuth H, Siegert P, Maurer KH, Schwaneberg U (2013). Surface charge engineering of a Bacillus gibsonii subtilisin protease. Applied Microbiology Biotechnology 97(15):6793?6802.
Crossref

 

Jin M, Gai Y, Guo X, Hou Y, Zeng R (2019). Properties and applications of extremozymes from deep-sea extremophilic microorganisms: A mini review. Marine Drugs 17(12):656.
Crossref

 

Kamal KB, Balakrishnan H, Rele MV (2004). Compatibility of alkaline xylanases from an alkaliphilic Bacillus NCL (87-6-10) with commercial detergents and proteases. Journal Industrial Microbiology Biotechnology 31(2):83?87.
Crossref

 

Karan R, Mathew S, Muhammad R, Bautista DB, Vogler M, Eppinger J, Oliva R, Cavallo L, Arold ST, Rueping M (2020). Understanding High-Salt and Cold Adaptation of a Polyextremophilic Enzyme. Microorganisms 8(10): 1594.
Crossref

 

Kasana RC, Gulati A (2011). Cellulases from psychrophilic microorganisms: a review. Journal of Basic Microbiology 51: 572-579.
Crossref

 

Kashyap DR, Vohra PK, Chopra S, Tewari R. (2001). Applications of pectinases in the commercial sector: a review. Bioresource Technology 77(3):215?227.
Crossref

 

Ke MM, Ramesh B, Hang YA, Liu ZD (2018). Engineering and characterization of a novel low temperature active and thermo stable esterase from marine. Enterobacter cloacae. International Journal of Biological Macromolecules 118:304-310.
Crossref

 

Kuddus M, Roohi, Bano N, Sheik GB, Joseph B, Hamid B, Sindhu R, Madhavan A (2024). Cold-active microbial enzymes and their biotechnological applications. Microbial Biotechnology 17(4):14467.
Crossref

 

Kuhad RC, Gupta R, Singh A (2011). Microbial cellulases and their industrial applications. Enzyme Research 2011(1):280696.
Crossref

 

Kumar A, Verma V, Dubey VK, Srivastava A, Garg SK, Singh VP, Arora PK (2023). Industrial applications of fungal lipases: a review. Frontiers in Microbiology 14:1142536.
Crossref

 

Lahmar I, El Abed H, Khemakhem B, Belghith H, Ben Abdallah F, Belghith K (2017). Optimization, purification, and starch stain wash application of two new α-amylases extracted from leaves and stems of Pergularia tomentosa. BioMed Research International 2017(1):6712742.
Crossref

 

Lam MQ, Nik Mut NN, Thevarajoo S, Chen SJ, Selvaratnam C, Hussin H, Jamaluddin H, Chong CS (2018). Characterization of detergent compatible protease from halophilic Virgibacillus spp. CD6. 3 Biotechnology 8(2):104.
Crossref

 

Lin L, Xu J (2013). Dissecting and engineering metabolic and regulatory networks of thermophilic bacteria for biofuel production. Biotechnology Advances 31:827-837.
Crossref

 

Liu R, Jiang X, Mou H, Guan H, Hwang H, Li X (2009). A novel low-temperature resistant alkaline lipase from a soda lake fungus strain Fusarium solani N4-2 for detergent formulation. Biochemical Engineering Journal 46(3):265-270.
Crossref

 

Liu Y, Zhang N, Ma J, Zhou Y, Wei Q, Tian C, Fang Y, Zhong R, Chen G, Zhang S (2023) Advances in cold-adapted enzymes derived from microorganisms. Frontiers in Microbiology 14:1152847.
Crossref

 

Lu Z, Hu X, Shen P, Wang Q, Zhou Y, Zhang G, Ma Y (2018). A pH-stable, detergent and chelator resistant type I pullulanase from Bacillus pseudofirmus 703 with high catalytic efficiency. International Journal of Biological Macromolecules 109:1302-1310.
Crossref

 

Luo Z, Miao J, Li G, Du Y, Yu X (2017). A recombinant highly thermostable β-mannanase (ReTMan26) from thermophilic B. subtilis (TBS2) expressed in Pichia pastoris and its pH and temperature stability. Applied Biochemistry and Biotechnology 182(4):1259-1275.
Crossref

 

Ma F, Xie Y, Luo M, Wang S, Hu Y, Liu Y, Feng Y, Yang GY (2016). Sequence homolog-based molecular engineering for shifting the enzymatic pH optimum. Synthetic and Systems Biotechnology 1(3):195-206.
Crossref

 

Mageswari A, Subramanian P, Chandrasekaran S, Karthikeyan S, Gothandam KM (2017). Systematic functional analysis and application of a cold-active serine protease from a novel Chryseobacterium spp. Food Chemistry 217:18-27.
Crossref

 

Mehmood T, Saman T, Irfan M, Anwar F, Ikram MS, Tabassam Q (2019). Pectinase production from Schizophyllum commune through central composite design using citrus waste and its immobilization for industrial exploitation. Waste and Biomass Valorization 10:2527-2536.
Crossref

 

Melani NB, Tambourgi EB, Silveira E (2020). Lipases: From Production to Applications. Separation & Purification Reviews 49(2):143-158.
Crossref

 

Naik B, Kumar V, Goyal SK, Dutt Tripathi A, Mishra S, Joakim Saris PE, Kumar A, Rizwanuddin S, Kumar V, Rustagi S (2023). Pullulanase: unleashing the power of enzyme with a promising future in the food industry. Frontiers in Bioengineering and Biotechnology 11:1139611.
Crossref

 

Ndochinwa OG, Wang QY, Amadi OC, Nwagu TN, Nnamchi CI, Okeke ES, Moneke AN (2024). Current status and emerging frontiers in enzyme engineering: An industrial perspective. Heliyon 10(11):e32673.
Crossref

 

Okkels JS, Svendsen A, Borch K, Thellersen M, Patkar SA Petersen DA, Royer JC, Kretzschmar T (1997). New lipolytic enzyme with high capacity to remove lard in one wash cycle. U.S. Patent 97-05735.

 

Park HJ, Han SJ, Yim JH, Kim D (2018). Characterization of an Antarctic alkaline protease, a cold-active enzyme for laundry detergents. Korean Journal of Microbiology 54(1):60-68.

 

Poulouse AJSB (1994). Selection and method of making enzymes for perhydrolysis system and for altering substrate specificity, specific activity and catalytic efficiency, United States patent US 5:352-594.

 

Qin Y, Huang Z, Liu Z (2014). A novel cold-active and salt-tolerant alpha-amylase from marine bacterium Zunongwangia profunda: molecular cloning, heterologous expression and biochemical characterization. Extremophiles 18:271-281.
Crossref

 

Qiu Z, Shi P, Luo H, Bai Y, Yuan T, Yang P, Liu S, Yao B (2010). A xylanase with broad pH and temperature adaptability from Streptomyces megasporus DSM 41476, and its potential application in brewing industry. Enzyme Microbial Technology 46(6):506-512.
Crossref

 

Raddadi N, Cherif A, Daffonchio D, Neifar M, Fava F (2015). Biotechnological applications of extremophiles, extremozymes and extremolytes. Applied Microbiology Biotechnology 99(19): 7907-7913.
Crossref

 

Rajaei S, Noghabi KA, Sadeghizadeh M, Zahiri HS (2015). Characterization of a pH and detergent-tolerant, cold-adapted type I pullulanase from Exiguobacterium spp. SH3. Extremophiles 19:1145-1155.
Crossref

 

Ranjan R, Rai R, Bhatt SB, Dhar P (2023). Technological road map of cellulase: a comprehensive outlook to structural, computational, and industrial applications. Biochemical Engineering Journal 28:109020.
Crossref

 

Razzaq A, Shamsi S, Ali A, Ali Q, Sajjad M, Malik A, Ashraf M (2019). Microbial proteases applications. Frontiers Bioengineering Biotechnology 7:110.
Crossref

 

Saeki K, Ozaki K, Kobayashi T, Ito S (2007). Detergent alkaline proteases: enzymatic properties, genes, and crystal structures. Journal Bioscience Bioengineering 103(6):501?508.
Crossref

 

Sahay S, Chouhan D (2018). Study on the potential of cold-active lipases from psychrotrophic fungi for detergent formulation. Journal Genetic Engineering and Biotechnology 16(2):319-325.
Crossref

 

Sarangi A, Thatoi H (2024). Xylanase as a Promising Biocatalyst: A Review on Its Production, Purification and Biotechnological Applications. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences16:1-6.
Crossref

 

Sarmiento F, Peralta R, Blamey JM (2015). Cold and hot extremozymes: industrial relevance and current trends. Frontiers Bioengineering Biotechnology 3:148.
Crossref

 

Schallmey M, Singh A, Ward OP (2004). Developments in the use of Bacillus species for industrial production. Canadian Journal of Microbiology 50:1-17.
Crossref

 

Scheibel DM, Gitsov IPI, Gitsov I (2024). Enzymes in "Green" Synthetic Chemistry: Laccase and Lipase. Molecules (Basel, Switzerland) 29(5):989.
Crossref

 

Sharma S, Kour S, Avatsingh AU, Kumar N, Singh N (2024). Microbial enzymes in laundry detergents: Recent advances, future prospects, and risk assessment. Enzyme Biotechnology for Environmental Sustainability pp. 13-31.
Crossref

 

Singh R, Kumar M, Mittal A, Mehta PK (2016). Microbial enzymes: industrial progress in 21st century. 3 Biotech 6(2):174.
Crossref

 

Singh S, Singh G, Khatri M, Kaur A, Arya SK (2019). Thermo and alkali stable β-mannanase: Characterization and application for removal of food (mannans based) stain. International Journal of Biological Macromolecules 134: 536?546.
Crossref

 

Souza TV, Araujo JN, da Silva VM, Liberato MV, Pimentel AC, Alvarez TM, Squina FM, Garcia W (2016). Chemical stability of a cold-active cellulase with high tolerance toward surfactants and chaotropic agent. Biotechnological Report 9:1-8.
Crossref

 

Tindbaek N, Svendsen A, Oestergaard PR, Draborg H (2004). Engineering a substrate specific cold-adapted subtilisin. PEDS 17:149-56.
Crossref

 

Ugwuoji ET, Nwagu TN, Ezeogu LI (2023). Detergent-stable amylase production by Paenibacillus lactis strain OPSA3 isolated from soil; optimization by response surface methodology. Biotechnology Reports 39:e00808.
Crossref

 

Verma D, Satyanarayana T (2020). Xylanolytic extremozymes retrieved from environmental metagenomes: Characteristics, genetic engineering, and applications. Frontiers in Microbiology 11:551109.
Crossref

 

Vijayalaxmi S, Prakash P, Jayalakshmi SK, Mulimani VH, Sreeramulu K (2013). Production of extremely alkaliphilic, halotolerent, detergent, and thermostable mannanase by the free and immobilized cells of Bacillus halodurans PPKS-2. Purification and characterization. Applied Biochemistry and Biotechnology 171(2):382-395.
Crossref

 

Vivek K, Sandhia GS, Subramaniyan SJ (2022). Extremophilic lipases for industrial applications: A general review. Biotechnology Advances 60:108002.
Crossref

 

Wang Y, Shu T, Fan P, Zhang H, Turunen O, Xiong H, Yu L (2017). Characterization of a recombinant alkaline thermostable β-mannanase and its application in eco-friendly ramie degumming. Process Biochemistry 61:73-79.
Crossref

 

Wang L, Yao J, Niu J, Liu J, Li B, Feng M (2018a). Eco-friendly and highly efficient enzyme-Based wool shrink proofing finishing by multiple padding techniques. Polymers 10(11):1213.
Crossref

 

Wang X, Nie Y, Xu Y (2018b). Improvement of the activity and stability of starch-debranching pullulanase from Bacillus naganoensis via tailoring of the active sites lining the catalytic pocket. Journal of Agriculture and Food Chemistry 66(50):13236?13242.
Crossref

 

Wintrode PL, Miyazaki K, Arnold FH (2000). Cold adaptation of a mesophilic subtilisin like protease by laboratory evolution. The Journal of Biological Chemistry 275:31635-31640.
Crossref

 

Wong TS, Tee KL, Hauer B, Schwaneberg U (2004). Sequence saturation mutagenesis (SeSaM): a novel method for directed evolution. Nucleic Acids Research 32:e26.
Crossref

 

Yan W, Li X, Zhao D, Xie M, Li T, Qian L, Ye C, Shi T, Wu L, Wang Y (2024). Advanced strategies in high-throughput droplet screening for enzyme engineering. Biosensors & Bioelectronics 248:115972.
Crossref

 

Maghraby YR, El-Shabasy RM, Ibrahim AH, Azzazy HM (2023). Enzyme Immobilization Technologies and Industrial Application. ACS omega 8(6):5184-5196
Crossref

 

Zhang R, Song Z, Wu Q, Zhou J, Li J, Mu Y, Tang X, Xu B, Ding J, Deng S, Huang Z (2016). A novel surfactant-, NaCl-, and protease-tolerant β-mannanase from Bacillus spp. HJ14. Folia Microbiologica 61:233-242.
Crossref

 

Zhu D, Adebisi WA, Ahmad F, Sethupathy S, Danso B, Sun J (2020). Recent development of extremophilic bacteria and their application in biorefinery. Frontiers Bioenggnering and Biotechnology 8:483.
Crossref