African Journal of
Microbiology Research

  • Abbreviation: Afr. J. Microbiol. Res.
  • Language: English
  • ISSN: 1996-0808
  • DOI: 10.5897/AJMR
  • Start Year: 2007
  • Published Articles: 5233

Full Length Research Paper

Phenotypic and genotypic detection of β-lactams resistance in Klebsiella species from Egyptian hospitals revealed carbapenem resistance by OXA and NDM genes

Amira Mohamed EL-Ganiny*
  • Amira Mohamed EL-Ganiny*
  • Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
  • Google Scholar
Areej Mostafa EL-Mahdy
  • Areej Mostafa EL-Mahdy
  • Microbiology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
  • Google Scholar
Hemat Kamal Abd EL-Latif
  • Hemat Kamal Abd EL-Latif
  • Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
  • Google Scholar
Ramadan Hassan Ibrahem
  • Ramadan Hassan Ibrahem
  • Microbiology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
  • Google Scholar
Heba Ibrahem Abdelsabour
  • Heba Ibrahem Abdelsabour
  • Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
  • Google Scholar


  •  Received: 02 December 2015
  •  Accepted: 09 February 2016
  •  Published: 14 March 2016

References

Acheampong DO, Boamponsem LK, Feglo PK (2011). Occurrence and species distribution of Klebsiella Isolates: A case study at KomfoAnokye teaching hospital (Kath) in Ghana. Pelagia Res. Lib. 4:187-193.

 

Akujobi CO, Odu NN, Okorondu SI (2012). Detection of AmpC beta lactamases in clinical isolates of Escherichia coli and Klebsiella. Afr. J. Clin. Exp. Microbiol. 13:51-55.

 

Aladag MO, Dundar AUN, Durak Y, Gunes E (2013). Characterization of Klebsiella pneumoniae strains isolated from urinary tract infections: Detection of ESBL characteristics, antibiotic susceptibility and RAPD genotyping. Pol. J. Microbiol. 62(4):401-409.

 

Bali BE, Açık L, Sultan N (2010). Phenotypic and molecular characterization of SHV, TEM, and CTX-M and extended-spectrum β-lactamase produced by Escherichia coli, Acinobacter baumanni and Klebsiella isolates in a Turkish hospital. Afr. J. Microbiol. Res. 4:650-654.

 

Bhaskar M, Anand R, Harish, BN (2013). Prevalence of bla NDM-1 producing blood isolates of Escherichia coli, Klebsiella species and Enterobacter species in a tertiary care centre in South India. J. Microbiol. Res. Rev. 6:61-68.

 

Bora A, Sanjana R, Jha BK, Mahaseth SN, Pokharel K (2014). Incidence of metallo-beta-lactamase producing clinical isolates of Escherichia coli and Klebsiella pneumonia in central Nepal. BMC Res. Notes 7:557-564.

 

Bradford P, Urban C, Mariano N, Projan S, Rahal J, Bush K (1997). Imipenem resistance in Klebsiella pneumonia is associated with the combination of ACT-1, a plasmid-mediated AmpC β-lactamase and the loss of an outer membrane protein. Antimicrob. Agents Chemother. 41:563-569.

 

Bradford PA (2001). Extended-spectrum -lactamases in the 21st century: Characterization, epidemiology and detection of this important resistance threat. Clin. Microbiol. Rev. 14:933-951.

 

Bradford PA, Bratu S, Urban C, Visali M, Marriano N, Landman D (2004). Emergence of Carbapenem-resistant Klebsiella species possessing the class A carbapenem hydrolyzing KPC-2 and inhibitor resistant TEM-30 β-lactamases in New York City. Clin. Infect. Dis 39:55-60.

 

Brisse S, Grimont F, Grimont PAD (2006). The genus Klebsiella. Prokaryotes. 6:159-196.

 

Branger C, Lesimple AL, Bruneu B, Berry P, Zechovsky NL (1998). Long term investigation of clonal dissemination of K. pneumonia isolates producing extended spectrum β-lactamases in a university hospital. J. Med. Microbiol 47:201-209.

 

Bush K, Jacoby GA (2010). Updated functional classification of β-lactamases. Antimicrob Agents Chemother. 54:969-976.

 

Casewell MW, Phillips I (1981). Aspects of the plasmid-mediated antibiotic resistance and epidemiology of Klebsiella species. Am. J. Med. 70:459-462.

 

Chaudhary M, Payasi A (2013). Antimicrobial susceptibility patterns and molecular characterization of Klebsiella pneumonia clinical isolates from North Indian patients. Int. J. Med. Med. Sci. 46:1218-1223.

 

Chaudhary U, Aggarwal R (2004). Extended spectrum beta lactamases (ESBL): An emerging threat to clinical therapeutics. Indian J. Med. Microbiol. 22:75-80.

 

Clinical and Laboratory Standard Institute (CLSI, 2013). Performance standards for antimicrobial susceptibility testing. Twenty-Third Informational supplements. CLSI document 2013; M100-S23. Wayne, Pennsylvania, USA.

 

El-sharkawy AA, Elkady LM, Mansour SA, Esmaeel NE (2013). Detection of extended-spectrum and plasmid-mediated AmpC β-lactamases in nosocomial Klebsiella isolates. J. Microbiol. Infect. Dis. 3:24-30.

 

Fam N, Gamal D, El Said M, El Defrawy I, El Dadei E, El Attar S, Sorur S, Ahmed S, Klena J (2013). Prevalence of plasmid-mediated AmpC genes in clinical isolates of Enterobacteriaceae from Cairo, Egypt. Br. Microbiol Res. J. 3:525-537.

 

Geyer CN, Hanson ND (2013). Rapid PCR amplification protocols decrease the turn-around time for detection of antibiotic resistance genes in Gram-negative pathogens. Diagn. Microbiol. Infect. Dis 77:113-117.

 

Gupta N, Limbago BM, Patel JB, Kallen AJ (2011). Carbapenem-resistant Enterobacteriaceae: Epidemiology and prevention. Clin. Infect. Dis 53:60-67.

 

Haque R, Salam MA (2010). Detection of ESBL producing nosocomial negative bacteria from tertiary care hospital in Bangladesh. PJMS 26:887-891.

 

HO PL, Tsang DNC, Que TL, Ho M, Yuen KY (2000). Comparison of screening methods for detection of extended spectrum β-lactamases and their prevalence among E. coli and Klebsiella spp. in Hong Kong. ActaPathol. Microbiol. Immunol. Scandinavica 108:237-240

 

Jacoby GA (2009). AmpC Β-lactamases, Clin. Microbiol. Rev. 22:161-182

 

Jain A, Mondal R (2008). TEM and SHV genes in extended spectrum β- lactamase producing Klebsiella species and their antimicrobial resistance pattern. Indian J. Med. Res. 128:759-764.

 

Jarlier V, Nicolas MH, Fournier G, Philippon Al (1998). Extended spectrum β-lactamases conferring transferable resistance to newer β- lactamase agents in Enterobacteriaceae hospital prevalence and susceptibility patterns. Rev. Infect. Dis. 10: 867-878.

 

Kiratisin P, Apisarnthanarak A, Laesripa C, Saifon P (2008). Molecular characterization and epidemiology of extended spectrum β-lactamase producing Escherichia coli and Klebsiella pneumonia isolates causing health care associated infection in Thailand where CTX-M is endemic. Antimicrob. Agents Chemother. 52:2818-2824.

 

Koneman EW, Allen SD, Janda WM, Schreckenberger PC, Winn WC (1997). The Enterobacteriaceae. In color atlas and textbook of Diagnostic Microbiology, (5th Ed.). Lippincott, Philadelphia. pp. 171-252.

 

Li B, Xu X, Zhao Z, Wang M, Cao Y (2014). High prevalence of metallo-β-lactamase among carbapenem-resistant Klebsiella pneumoniae in a teaching hospital in China. Can. J. Microbiol. 60(10):691-695.

 

Lee K, Chong Y, Shin HB, Kim YA, Yong D, Yum JH (2001). Modified Hodge and EDTA- disk synergy tests to screen metallo-β-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clin. Microbiol. Infect. 7:88-91.

 

Livermore DM (2012). Current epidemiology and growing resistance of Gram-negative pathogens. Korean J. Int. Med. 27:128-142.

 

Livermore DM, Warner M, Mushtaq S, Doumith M, Zhang J, Woodford N (2011). What remains against carbapenem-resistant Enterobacteriaceae? Evaluation of chloramphenicol, ciprofloxacin, colistin, fosfomycin, minocycline, nitrofurantoin, temocillin and tigecycline. Int. J. Antimicrob. Agents 37:415-419.

 

Mendes RE, Bell JM, Turnidge JD, Castanheira M, Jones RN (2009). Emergence and widespread dissemination of OXA-23, -24/40 and -58 carbapenemases among Acinetobacter spp. in Asia-Pacific nations: Report from the sentry surveillance program. J. Antimicrob. Chemother. 63:55-59.

 

Midan D, Swarnamoni D, Kalpana G (2012). A study of occurrence of antibiotic resistance reported against Klebsiella spp. In a tertiary care hospital in Assam, India. Int. Res. J. Pharm. 3:58-59.

 

Nair MK, Venkitanarayanan KS (2006). Cloning and sequencing of ompA gene of Enterobacter sakazakkii and development of an ompA-targeted PCR for rapid detection of Enterobacter sakazakiiin infant formula.Appl Environ Microbiol 72:2539-2546.

 

Nordmann P, Cuzon G, Naas T (2009). The real threat of Klebsiella pneumoniae carbapenemases producing bacteria. Lancet Infect. Dis. 9(4): 228-236.

 

Paterson DL, Bonomo, RA (2005). Extended-spectrum β-lactamases: A clinical update. Clin. Microbiol. 18:657-686.

 

Pfeifer Y, Schlatterer K, Engelmann E, Schiller RA, Frangenberg HR, Stiewe D, Holfelder M, Witte W, Nordmann P, Poirel L (2012). Emergence of OXA-48-type carbapenemase-producing Enterobacteriaceae in German hospitals. Antimicrob. Agents Chemother. 4: 2125-2127.

 

Podschun R, Ullmann U (1998). Klebsiella spp. as nosocomial pathogens: Epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev 11:589-603.

 

Rahal JJ (2008). The role of carbapenems in initial therapy for serious Gram-negative infections. Crit Care 12 (Suppl 4):S5.

 

Robledo IE, Aquino EE, Va´zquez GJ (2011). Detection of the KPC gene in Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa and Acinetobacter baumannii during a PCR- based nosocomial surveillance study in Puerto Rico. Antimicrob. Agents Chemother. 55:2968-2970.

 

Sekowska A, Janika G, Klyszejko C, Wojda M, Wroblewskiand M, Szymankiewicz M (2002). Resistance of K. pneumonia strains producing and not producing extended spectrum β- lactamase (ESBL) type enzyme to selected non β-lactam antibiotics. Med. Sci. Mon. 8:100-104.

 

Shivanna V, Rao A (2014). Detection of AmpC β-lactamases among Gram negative clinical isolates. International J. Recent Trends Sci. Technol. 9:361-364.

 

Singhal S, Mathur T, Khan S, Upadhyay DJ, Chugh S, Gaind R, Rattan A (2005). Evaluation of methods for AmpC beta-lactamase in Gram negative clinical isolates from tertiary care hospitals. Indian J. Med. Microbiol. 23:120-124.

 

Thosar MG, Kamble VA (2014). Prevalence of Klebsiella species isolated from clinical samples in Vidarbha region of Maharashtra state India. Int. J. Pharm. BioSci. 3:40-45.

 

Traub WH, Schwarze I, Bauer D (2000). Nosocomial outbreak of cross-infection due to multiple-antibiotic-resistant Klebsiella pneumonia: Characterization of the strain and antibiotic susceptibility studies. Chemotherapy 46:1-14.

 

Walsh TR, Toleman MA, Poirel L, Nordmann P (2005). Metallo β- lactamase: The quite before the storm. Clin. Microbiol. Rev. 18:306-325.

 

Wollheim C, Guerra MI, Conte VD, Hoffman SP, Schreiner FJ, Delamare APL, Barth AL, Echeverrigaray S, Costa SO (2011). Nosocomial and community infections due to class A extended-spectrum beta-lactamase -producing Escherichia coli and Klebsiella spp. in Southern Brazil. Braz. J. Infect. Dis. 15:138-143.

 

Yasmin T (2012). Prevalence of ESBL among E. coli and Klebsiella spp. in a tertiary care hospital and molecular detection of important ESBL producing genes by multiplex PCR. MSc Thesis. Mymensingh Medical College, Bangladesh.

 

Yong D, Lee K, Yum JH, Shin HB, Rossolini GM, Chong Y (2002). Imipenem-EDTA disk method for differentiation of metallo-β-lactamase producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. J. Clin. Microbiol. 40:3798-3801.

 

Yong D, Toleman MA, Giske CG, Cho HS, Sundman K,Lee K, Walsh TR (2009). Characterization of a new metallo-beta-lactamase gene, bla (NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother 53:5046-54.