African Journal of
Microbiology Research

  • Abbreviation: Afr. J. Microbiol. Res.
  • Language: English
  • ISSN: 1996-0808
  • DOI: 10.5897/AJMR
  • Start Year: 2007
  • Published Articles: 5233

Review

Plant growth promoting rhizobacteria and their potential for biocontrol of phytopathogens

Elshahat M. Ramadan*
  • Elshahat M. Ramadan*
  • Department of Microbiology, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.
  • Google Scholar
Ahmed A. AbdelHafez
  • Ahmed A. AbdelHafez
  • Department of Microbiology, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.
  • Google Scholar
Enas A. Hassan
  • Enas A. Hassan
  • Department of Microbiology, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.
  • Google Scholar
Fekria M. Saber
  • Fekria M. Saber
  • Department of Biotechnology, Heliopolis University, Cairo, Egypt.
  • Google Scholar


  •  Received: 10 August 2015
  •  Accepted: 02 October 2015
  •  Published: 21 April 2016

References

Abd-Alla MH (1994). Use of organic phosphorus by Rhizobium leguminosarumbv. viciae phosphatises. Biol. Fertil. Soils 8: 216-218.
Crossref

 

Ahamad F, Ahmad I, Saghir KM (2005). Indole acetic acid production by the indigenous isolates of Azatobacter and fluorescent pseudomonas in the presence and absence of tryptophan. Turk. J. Bio. 29: 29-34.

 
 

Adesemoye AO, Obini M, Ugoji EO (2008). Comparison of plant growth-promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables. Braz. J. Microbiol. 39:423-426.
Crossref

 
 

Alexander M (1977). "Introduction to Soil Microbiology" (2nd ed.). Wiley, New York, USA. P 467.

 
 

Amarger N, Macheret V, Laguerre G (1997). Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int. J. Syst. Bacteriol. 47(4):996-1006
Crossref

 
 

Amein T, Omer Z, Welch C (2008). Application and evaluation of Pseudomonas strains for biocontrol of wheat seedling blight. Crop Prot. 27: 532-536.
Crossref

 
 

Anjaiah V, Koedam N, Thompson BN, Loper JE, Höft M, Tambong JT, Cornelis P (1998). Involvement of phenazines and anthranilate in the antagonism of Pseudomonas aeruginosa PNA1 and Tn5-derivatives towards Fusarium sp. and Pythium sp. Mol. Plant- Microbe Interact. 11: 847-854.
Crossref

 
 

Anjaiah V, Cornelis P, Koedam N (2003). Effect of genotype and root colonization in biological control of fusarium wilts in pigeonpea and chickpea by Pseudomonas aeruginosa PNA1. Can. J. Microbiol., 49:85-91.
Crossref

 
 

Antoun H, Prevost D (2006). Ecology of plant growth promoting rhizobacteria. In: Siddiqui, Z. A. (ed.) PGPR: Biocontrol and Biofertilization. Springer Netherlands.
Crossref

 
 

Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998). Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: Effect on radishes (Raphanus sativus L.). Plant Soil 204:57–67.
Crossref

 
 

Arshad M, Frankenberger WT (1998). Plant growth regulating substances in the rhizosphere: Microbial production and functions. Adv. Agron. 62: 46-151.

 
 

Ashrafuzzaman M, Hossen FA, Razi Ismail M, Anamul Hoque MD, Zahurul Islam M, Shahidullah SM, Meon S (2009). Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. Afr. J. Biotechnol. 8(7): 1247-1252.

 
 

Avis TJ, Gravel V, Antoun H, Tweddell RJ (2008). Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil. Biol. Biochem. 40:1733-1740.
Crossref

 
 

Bai Y, D'Aoust F, Smith DL, Driscoll BT (2002). Isolation of plant growth promoting Bacillus strains from soybean root nodules. Can. J. Microbiol. 48: 230-238.
Crossref

 
 

Bais H, Park PSW, Weir TL, Callaway RM, Vivanco JM (2004). How plants communicate using the underground information superhighway. Trends Plant Sci. 9: 26-32
Crossref

 
 

Baker PA, Weisheek PJ, Schippers B (1986). The role of siderophores in plant growth stimulation by fluorescent Pseudomonas sp. Med. Fac. Landboucow Rijksumiv. Gent. 51(31): 1357-1362.

 
 

Bangera MG, Thomashow LS (1996). Characterization of a genomic locus required for synthesis of the antibiotic 2-4-diacetylphloroglucinol by the biological control agent Pseudomonas fluorescens Q2-87. Mol. Plant Microbe Interact. 9: 83-90.
Crossref

 
 

Bapat S, Shah AK (2000). Biological contact of Fusarium wilt of pigeon pea by Bacillus brevis on wheat. Can. J. Microb. 46: 125-132.
Crossref

 
 

Bashan Y, Levanony H (1985). An improved selection technique and medium for the isolation and enumeration of Azospirillum brasilense. Can. J. Microbiol. 31: 947952.
Crossref

 
 

Bashan Y, de-Bashan LE (2010). Chapter two - How the plant growth-promoting bacterium Azospirillum promotes plant growth a critical assessment. Adv. Agron. 108:77–113.
Crossref

 
 

Bashan Y, Holguin G, de-Bashan LE (2004). Azospirillum plant relationships: Physiological, molecular, agricultural, and environmental advances (1997-2003). Can. J. Microbiol. 50: 521-577.
Crossref

 
 

Belimov AA, Kojemiakov AP, Chuvarliyeva CV (1995). Interaction between barley and mixed cultures of nitrogen fixing and phosphate-solubilizing bacteria. Plant Soil 173: 29-37.
Crossref

 
 

Benizri E, Baudoin E, Guckert A (2001). Root colonization by inoculated plant growth-promoting rhzobacteria. Biocontrol Sci. Technol. 11: 557-574.
Crossref

 
 

Berg G (2009). Plant-microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 84: 11-18.
Crossref

 
 

Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J (2005). Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol. Ecol. 51: 215-2291.
Crossref

 
 

Berg G, Roskot N, Steidle A, Eberl L, Zock A, Smalla K (2002). Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl. Environ. Microbiol. 68:3328-3338.
Crossref

 
 

Berthelin J, Leyrol C, Laheurt F, Degiudici P (1991). Some considerations on the relations between phosphate solubilizing rhizobacteria and their effect on seedling and plant growth related to phosphorus solubilizing. In "Growth Promoting Rhizobacteria: Progress and Prospects" (C. Keel, B. Koller, and G. Defago, Eds.), IOBC, Switzerland. pp. 359-364.

 
 

Bhattacharyya PN, Jha DK (2012).Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J. Microbiol. Biotechnol. 28:1327-1350.
Crossref

 
 

Biswas JC, Ladha JK Dazzo FB (2000). Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Sci. Soc. Am. J. 64:1644-1650.
Crossref

 
 

Bochow H, El-Sayed SF, Junge H, Stavropoulou A, Schmiedeknecht G (2001). Use of Bacillus subtilis as biocontrol agent. IV Salt-stress tolerance induction by Bacillus subtilis FZB 24 seed treatment in tropical vegetables field crops, and its mode of action. Z. PfiKramkh. PflSchuez 108: 21-30.

 
 

Boiero L, Perrig D, Masciarelli O, Penna C, Cassan F, Luna V (2007). Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl. Microbiol. Biotechnol. 74:874–880.
Crossref

 
 

Buchenauer H (1998). Biological control of soil-borne diseases by rhizobacteria [Review]. Z. Pflanzenk, Pflanzens. 105: 329-348.

 
 

Cakmakci R, Donmez F, Aydin A, Sahin F (2006). Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol. Biochem. 38(6):1482–1487.
Crossref

 
 

Campanoni P, Blasius B, Nick P (2003). Auxin transport synchronizes the pattern of cell division in a tobacco cell line. Plant Phys. 133: 1251-1260.
Crossref

 
 

Cao J, Jiang W, He H (2005). Induced resistance in Yali Pear (Pyrus bertschneideri Rehd.) fruit against infection by Penicillium expensum by postharvest infiltration of acibenzolar-s-methyl. J. Phytopathol. 153:640-646.
Crossref

 
 

Cao L, Qiu Z, Dai X, Tan H, Lin Y, Zhou S (2004). Isolation of endophytic actinomycetes from roots and leaves of banana (Musa acuminata) plants and their activities against Fusarium oxysporum f. sp. cubense. World J. Microbiol. Biotechnol. 20:501–504.
Crossref

 
 

Cardoso EJBN, and Freitas SS (1992). A rizosfera. In: Cardoso EJBN, Tsai SM, Neves PCP (eds) Microbiologia do solo. Sociedade Brasileira de Ciencia do Solo, Campinas. pp. 41–57.

 
 

Carson KC, Meyer JM, Dilworth MJ (2000). Hydroxamate siderophores of root nodule bacteria. Soil Biol. Biochem. 32:11–21.
Crossref

 
 

Castro RO, Cornejo HAC, Rodriguez LM, Bucio JL (2009). The role of microbial signals in plant growth and development. Plant Sig. Behav 4(8):701–712.

 
 

Cattelan AJ, Hartel PG, Fuhrmann JJ (1999). Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci. Soc. Am. J. 63:1670–1680
Crossref

 
 

Chabot R, Beauchamp CJ, Kloepper JW, Antoun H (1998). Effect of phosphorus on root colonization and growth promotion of maize by bioluminescent mutants of phosphate-solubilizing Rhizobium leguminosarum biovar phaseoli. Soil Biol. Biochem. 30:1615-1618.
Crossref

 
 

Chabot R, Antoun H, Kloepper JW, Beauchamp CJ (1996). Root colonization of maize and lettuce by bioluminescent Rhizobium leguminosaurm biovar phaseoli. Appl. Environ. Microbiol. 62: 2767-2772.

 
 

Chen WX, Yan GH, Li JL (1988). Numerical taxonomic study of fast growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int. J. Syst. Bacteriol. 38(4):392–397.
Crossref

 
 

Colyer PD, Mount MS (1984). Bacterization of potatoes with Pseudomonas putida and its influence on post harvest soft rot diseases. Plant Dis. 68: 703-706.
Crossref

 
 

Cook RJ (1993). Making greater use of introduced micro-organisms for biological control of plant pathogens. Ann. Rev. Phytopathol. 31: 53- 80.
Crossref

 
 

Compant S, Clément C, Sessitsch A (2010). Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42: 669-678.
Crossref

 
 

Corbell N, Loper JE (1995). Aglobal regulator of secondary metabolite production in Pseudomonas fluorescens Pf-5. J. Bacteriol. 177: 6230-6236

 
 

Costa R, Gomes NCM, Peixoto RS, Rumjanek N, Berg G, MendonçaHagler LCS, Smalla K (2006). Diversity and antagonistic potential of Pseudomonas spp. associated to the rhizosphere of maize grown in a subtropical organic farm. Soil Biol. Biochem. 38: 2434-2447.
Crossref

 
 

Costacurta A, Vanderleyden J (1995). Synthesis of phytohormones by plant-associated bacteria. Crit. Rev. Microb. 21: 1-18.
Crossref

 
 

D'aes J, Gia KHH, De Maeyer K, Pannecoucque J, Forrez I, Ongena M, Dietrich LEP, Thomashow LS, Mavrodi DV, Hofte M (2011). Biological control of Rhizoctonia root rot on bean by phenazine and cyclic lipopeptide-producing Pseudomonas CMR12a. Phytopathology 101:996-1004.
Crossref

 
 

Dakora FD (2003). Defining new roles for plant and rhizobial molecules in sole and mixed plant cultures involving symbiotic legumes. New Phytol. 158: 39–49.
Crossref

 
 

Damayanti TA, Pardede H, Mubarik NR (2007). Utilization of root colonizing bacteria to protect hot-pepper against Tobacco Mosaic Tobamovirus. Hayati J. Biosci. 14(3): 105-109.

 
 

De Bellis P, Ercolani GL (2001). Growth interactions during bacterial colonization of seedling rootlets. Appl. Environ. Microbiol. 67: 1945-1948.
Crossref

 
 

de Lajudie P, Laurent-Fulele E, Willems A (1998a). Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. Int. J. Syst. Bacteriol. 48:1277–1290
Crossref

 
 

de Lajudie P, Willems A, Nick G, Moreira F (1998b). Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int. J. Syst. Bacteriol. 48:369–382.
Crossref

 
 

de Vasconcellos RLF, Cardoso EJBN (2009). Rhizospheric streptomycetes as potential biocontrol agents of Fusarium and Armillaria pine rot and as PGPR for Pinus taeda. Biocontrol 54:807-816.
Crossref

 
 

de Vasconcellos RLF, da Silva MCP, Ribeiro CM, Cardoso EJBN (2010). Isolation and screening for plant growth-promoting (PGP) actinobacteria from Araucaria angustifolia rhizosphere soil. Sci. Agric. 67:743-746.
Crossref

 
 

De Vleesschauwer D, Cornelis P, Höfte M (2006). Redox-active pyocyanin secreted by Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to Magnaporthe grisea but enhances Rhizoctonia solani susceptibility in rice. Mol. Plant Microbe Interact. 19(12): 1406-1419.
Crossref

 
 

Defago G, Haas D (1990). Pseudomonads as antagonists of soil borne plant pathogens: Mode of action and genetic analysis. Soil Biochem. 6: 249-291.

 
 

Dekkers LC, Mulders IHM, Phoelich CC, Chin-A-Woemg TFC, Wijfjes AHM, Lugtennberg BJJ (2000). The colonization gene of the tomato Fusarium oxysporum f. sp. Radicis- lycopersici biocontrol strain Pseudomonas fluorescens WCS365 can improve root colonization of other wild-type Pseudomonas spp. Bacteria. Mol. Plant-Microbe Interact. 13: 1177-1183.
Crossref

 
 

Dias A, Santos SG, Vasconcelos VGS, Radl V, Xavier GR, Rumjanek NG, Ribeiro RL (2013). Screening of plant growth promoting rhizobacteria for the development of vegetable crops inoculants. Afr. J. Microbiol. Res. 7(19):2087-2092.

 
 

Dobbelaere S, Vanderleyden J, Okon Y (2003). Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit. Rev. Plant Sci. 22: 107-149.
Crossref

 
 

Dong YH, Zhang LH (2005). Quorum sensing and quorum-quenching enzymes. J. Microbiol. 43: 101-109.

 
 

Dreyfus B, Garcia JL, Gillis M (1988). Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int. J. Syst. Bacteriol. 38:89-98.
Crossref

 
 

El-Khawas HM (1995). Indole acetic acid production by natural soil microresidents. Egypt. J. Appl. Sci., 10:575-582.

 
 

El-Khawas H.M, Ibrahim IA, Anwar HM, Hegazi NA (2000). Isolation and characterization of plant growth promoting rhizobacteria producing indole-3-acetic acid from plants growing in Egypt. J. Agric. Sci. Mansoura Univ. 25: 6493-6502.

 
 

Elliot LF, Lynch JM (1984). Pseudomonads as a factor in the growth of winter wheat (Triticum aestivum L.) Soil Biol. Biochem. 16:69-71.
Crossref

 
 

El-Tarabily KA, Sivasithamparam K (2006). Non-streptomycete actinomycetes as biocontrol agent of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol. Biochem. 38:1505-1520.
Crossref

 
 

Emmert EA, Handelsman J (1999). Biocontrol of plant diseases: A (Gram-) positive perspective. FEMS Microbiol. Lett. 171: 1–9.
Crossref

 
 

Ezzat SM, Sarhan MM, Tohamy MRA, El-Essawy AA (2001). Isolation, optimization and characterization of an antifungal substance from Bacillus subtilis against Fusarium oxysporum f. sp. Lycopersici. Egypt. J. Microbiol. 36: 191-209.

 
 

Farmer EE (2001). Surface-to-air signals. Nature 411:854-856.
Crossref

 
 

Forlani G, Mantelli M, Branzoni M, Nielsen E, Favilli F (1995). Root colonization efficiency, plant growth promoting activity and potentially related properties associated bacteria. J. Gene Breed. 49: 343-351.

 
 

Forlani GM, Mantelli M, Nielsen E (1999). Biochemical evidence for multiple acetoin-forming enzymes in cultured plant cells. Phytochemistry 50: 255-262.
Crossref

 
 

Franco-Correa M, Quintana A, Duque C, Suarez C, Rodriguez MX, Barea JM (2010). Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Appl. Soil Ecol. 45:209-217.
Crossref

 
 

Frankenberger WT, Arshad M (1995). Phytohormones in Soil: Microbial Production and Function. Dekker, New York, USA. P 503.

 
 

Fridlender M, Inbar J, Chet I (1993). Biological control of soil-borne plant pathogens by a ß-1, 3-glucanase producing Pseudomonas cepacia. Soil Biol., Biochem. 25: 1211-1221.
Crossref

 
 

Fuchs R, Schäfer M, Geoffroy V, Meyer JM (2001). Siderotyping - A powerful tool for the characterization of pyoverdines. Curr. Trop. Med. Chem. 1:31-35.
Crossref

 
 

Gamalero E, Lingua G, Berta G, Glick BR (2009). Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can. J. Microbiol. 55: 512-514
Crossref

 
 

Garcia de Salamone IE, Hynes RK, Nelson LM (2001). Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can. J. Microbol. 47:404-411.
Crossref

 
 

Gardner JM, Chandler L, Feldman AW (1984). Growth promotion and inhibition by antibiotics producing fluorescent Pseudomonads on citrus root. Plant Soil 77:103-113.
Crossref

 

 

Ghonim MI (1999). Induction of systemtic resistance against Fusarium wilt in tomato by seed treatment with the biocontrol agent Bacillus subtilis. Bull. Fac. Agric., Cairo Univ. 50: 313-328.

 

Glass ADM (1989). Plant nutrition: An introduction to current concepts. Jones and Bartlett Publishers, Boston. P 234.

 
 

Glick BR (1995). The enhancement of plant growth promotion by free living bacterial. Can. J. Microb. 41: 109-117.
Crossref

 
 

Glick BR (2010). Using soil bacteria to facilitate phytoremediation. Biotechnol. Adv. 28:367-374.
Crossref

 
 

Glick BR, Bashan Y (1997). Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol. Adv.15: 353-378.
Crossref

 
 

Glick BR, Patten CL, Holguin G, Penrose DM (1999). Biochemical and genetic mechanisms used by plant growth-promoting bacteria. Imperial College Press, London.

 
 

Glick BR, Penrose DM, Li JP (1998). A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theor. Biol. 190: 63-68.
Crossref

 
 

Gomes RC, Semedo LTAS, Soares RMA, Alviano CS, Linhares LF, Coelho RRR (2000). Chitinolytic activity of actinomycetes from a cerrado soil and their potential in biocontrol. Lett. Appl. Microbiol. 30:146-150.
Crossref

 
 

Gray EJ, Smith DL (2005). Intracellular and extracellular PGPR: Commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol. Biochem. 37: 395-412.
Crossref

 
 

Grayston SJ, Stephens JH, Nelson LM (1990). Field and green house studies on growth promoting of spring wheat inoculated with co-existent rhizobacteria. Second International Workshop on PGPR, Interlaken, Switzerland, pp. 88-96.

 
 

Guerinot ML, Chelm BK (1984). Isolation and expression of the Bradyrhizobium japonicum adenylate cyclase gene (cya) in Escherichia coli. J. Bacteriol. 159:1068-1071.

 
 

Gyaneshwar P, Parekh LJ, Archana G, Poole PS, Collins MD, Hutson RA, Naresh Kumar G (1999). Involvement of a phosphate starvation inducible glucose dehydrogenase in soil phosphate solubilization by Enterobacter asburiae. FEMS Microbiol. Lett. 171: 223-229.
Crossref

 
 

Haas D, Defago G (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3:307-319.
Crossref

 
 

Haas D, Keel C (2003). Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu. Rev. Phytopathol. 41: 117-153.
Crossref

 
 

Haas D, Keel C, Reimmann C (2002). Signal transdction in plant-beneficial rhizobacteria with biocontrol properties. Antonie Van Leeuwenhoek 81: 385-395.
Crossref

 
 

Hameeda B, Harini G, Rupela OP Wani SP, Reddy G (2008). Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiol. Res. 163:234-242.
Crossref

 
 

Han J, Sun L, Dong X, Cai Z, Sun X, Yang H, Wang Y, Song W (2005). Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Syst. Appl. Microbiol. 28(1):66-76.
Crossref

 
 

Handelsman J, Stabb EV (1996). Biocontrol of soil-borne plant pathogens. Plant Cell 8: 1855-1869.
Crossref

 
 

Hanlon D, Rosario ML, Venema GWG, Van Sinderen D (1994). Identification of T1 pC.a noval 62 Kda McP- like protein from Bacillus subtilis. Microbiology 140: 1847-1856.
Crossref

 
 

Harman EG (1991). Seed treatments for biological control of plant disease. Crop Prot. 10: 166-171.
Crossref

 
 

Hartmann A, Rothballer M, Schmid M (2008). Lorenz Hiltner: A pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312: 7-14.
Crossref

 
 

Hawes MC (1991). Living plant cells released from the root cap: A regulator of microbial populations in the rhizosphere? In The Rhizosphere and Plant Growth, D.L. Keister and P.B. Cregan, eds, Kluwer Academic Publishers, Boston, MA, pp. 51-59.
Crossref

 
 

Herschkovitz Y, Lerner A, Davidov Y, Rothballer M, Hartmann A, Okon Y, Jurkevitch E (2005). Inoculation with the plant-growthpromoting rhizobacterium Azospirillum brasilense causes little disturbance in the rhizosphere and rhizoplane of maize (Zea mays). Microb. Ecol. 50(2):277-288.
Crossref

 
 

Hinsinger P (2001). Bioavailability of soil inorganic P in the rhizosphere as affected by root induced chemical changes: A review. Plant Soil 237:173-195.
Crossref

 
 

Höfte M, Altier N (2010). Fluorescent pseudomonads as biocontrol agents for sustainable agricultural systems. Res. Microbiol. 161:464-471.
Crossref

 
 

Innes L, Hobbs PJ, Bardgett RD (2004). The impacts of individual plant species on rhizosphere microbial communities in soils of different fertility. Biol. Fertil. Soils 40: 7-13.
Crossref

 
 

Joo GJ, Kim YM, Lee IJ, Song KS, Rhee IK (2004). Growth promotion of red pepper plug seedlings and the production of gibberllins by Bacillus cereus, Bacillus macroides and Bacillus Pumilus. Biotechnol. Lett. 26: 487-491.
Crossref

 
 

Joshi P, Bhatt AB (2011). Diversity and function of plant growth promoting rhizobacteria associated with wheat rhizosphere in North Himalayan region. Int. J. Environ. Sci. 1(6): 1135-1143.

 
 

Kaymak HC (2011). Potential of PGPR in Agricultural Innovations. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Microbiol monographs. Springer, Berlin. 18: 45-79.
Crossref

 
 

Kazmar ER, Goodman RM, Grau CR, Johnson DW, Norrdheim EV, Undersander KJ, Handelsman J (2000). Regression analyses for evaluatging the enfluence of Bacillus cereus on alfalfa yield under variable disease indensity. Phytopathology 90: 657-665.
Crossref

 
 

Keel C, Voisard C, Berling CH, Kadr G, Defago G (1989). Iron sufficiency, a prerequisite for the suppression of tobacco root rot by Pseudomonas fluorescens strain CHAO under gnotobiotic conditions. Phytopathology 79: 584-589.
Crossref

 
 

Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Haas D, Defago G (1992). Suppression of root diseases by Pseudomonas fluorescens CHAO: Importance of bacterial secondary metabolite, 2,4-diacetylphoroglucinol. Mol. Plant-Microbe Interact. 5:4-13.
Crossref

 
 

Khalid A, Arshad M, Zahir ZA (2004).Screening plant growthpromoting rhizobacteria for improving growth and yield of wheat. J. Appl. Microbiol. 96(3):473–480.
Crossref

 
 

Kilian M, Steiner U, Krebs B, Junge H, Schmiedeknecht G, Hain R (2000). FZB24 Bacillus subtilis mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz Nachr Bayer 1: 72-93.

 
 

Kim KY, Jordan D, McDonald GA (1998). Effect of phosphatesolubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol. Fertil. Soils 26: 79-87.
Crossref

 
 

Kloepper JW (1996). Biological control agents vary in specificity for host, pathogen control, ecological habitat and environmental conditions. Biol. Sci. 46: 406-409.

 
 

Kloepper JW, Schroth MN (1978).Plant grotwh-promoting rhizobacteria in radish in Proceedings of 4th International Conference on Plant Pathogenic Bacteria. Gilbert-Clarey, Tours, France, pp. 879-882.

 
 

Kloepper JW, Schroth MN (1981). Relationship of in vitro antibiosis of plant growth promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology 71: 1020-1024.
Crossref

 
 

Kloepper JW, Gutierrez-Estrada A, Mclnroy JA (2007). Photoperiod regulates elicitation of growth promotion but not induced resistance by plant growth-promoting rhizobacteria. Can. J. Microbiol. 53(2): 159-167.
Crossref

 
 

Kloepper JW, Lifshitz R, Zablotowicz R (1989). Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol. 7: 39-44.
Crossref

 
 

Kloepper JW, Zablokovicz RM, Tipping EM, Lifshitz R (1991). Plant growth promotion mediated by bacterial rhizosphere colonizers. In: The rhizosphere and plant growth. Keister, DL, and Cregan, PB. (ads) Kluwer Academic Publishers, Netherlands. pp. 315-326.

 
 

Klopper JW, Lifshitz R, Novacky A (1988). Pseudomonas inoculation to benefit plant production. Anim. Plant Sci. 8: 60-64.

 
 

Köberl M (2013). The microbiome of medicinal plants and its potential for biocontrol and promotion of plant growth and quality. Ph.D. Thesis, Environmental Biotech. Dept. Graz Univ. Graz, Austuria.

 
 

Köberl M, Ramadan EM, Adam M, Cardinale M, Hallmann J, Heuer H, Smalla K, Berg G (2013). Bacillus and Streptomyces were selected as broad-spectrum antagonists against soilborne pathogens from arid areas in Egypt. FEMS Microbiol.Lett. 342: 168-178.
Crossref

 
 

Kremer RJ, Souissi T (2001). Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Curr. Microbiol. 43: 182-186.
Crossref

 
 

Krishnamurthy K, Gnanamanickam SS (1998). Biological control of rice blast by Pseudomonas fluorescens strain Pf7-14: Evaluation of a marker gene and formulations. Biol. Control 13: 158-165.
Crossref

 
 

Kumar A, Prakash A, Johri BN (2011). Bacillus as PGPR in Crop Ecosystem. In: Maheshwari, D. K. (ed.) Bacteria in Agrobiology: Crop Ecosystems. Springer Berlin Heidelberg.
Crossref

 
 

Lambers H, Mougel C, Jaillard B, Hinsinger P (2009). Plant-microbe-soil interactions in the rhizosphere: An evolutionary perspective. Plant Soil 321: 83-115.
Crossref

 
 

Leong J (1986). Siderophores: Their biochemistry, and possible role in the biocontrol of plant pathogens. Ann. Rev. Phytopathol. 24: 187-209.
Crossref

 
 

Lifshitz R, Kloepper JW, Mozlowski M, Simonson C, Carlson J, Tipping EM, Zaleska I (1987). Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Can. J. Microbiol. 33: 390-395.
Crossref

 
 

Lindstrom K (1989).Rhizobiumgalegae, a new species of legume root nodule bacteria. Int. J. Syst. Bacteriol. 39:365-367.
Crossref

 
 

Loper JE, Buyer JW (1991). Siderophores in microbial interactions on plant surfaces. Mol. Plant-Microbe Int. 4: 5-13.
Crossref

 
 

Lucas-Garcia JA, Schloter M, Durkaya T, Hartman A, GutierrezManero FJ (2003). Colonization of pepper roots by plant growth promoting pseudomonas fluorescens strain. Boil. Fertil. Soils 37: 381-385.

 
 

Lucy M, Reed E, Glick BR (2004). Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 86: 1-25.
Crossref

 
 

Lugtenberg B, Kamilova F (2009). Plant-growth-promoting rhizobacteria. Ann. Rev. Microbiol. 63: 541-556.
Crossref

 
 

Lugtenberg BJ, Dekkers L, Bloemberg GV (2001). Molecular determinants of rhizosphere colonization by Pseudomonas. Annu. Rev. Phytopathol. 39:461-490.
Crossref

 
 

Lugtenberg BJJ, Dekkers LC (1999). What makes Pseudomonas bacteria rhizosphere competent? Environ. Microbiol. 1: 9-13.
Crossref

 
 

Ma W, Zalec K, Glick BR (2001). Biological activity and colonization pattern of the bioluminescence-labeled plant growth-promoting bacterium Kluyvera ascorbata SUD165/26. FEMS Microbiol. Ecol. 35:137–144.
Crossref

 
 

Marschner P, Crowley D Yang CH (2004). Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil 261: 199-208.
Crossref

 
 

Martin L, Peix A, Mateos PF, Martinez-Molina E, Rodriguez-Barrueco C, Velazquez E (2002). Mobilization of phosphorus from soil to strawberry plants by a strain of Rhizobiumleguminosarumbv. trifolii. In First International Meeting on Microbial phosPhate Solubilization, Abstract Salamanca, Spain: Universidad de Salamanca, IRNA-CSIC.

 
 

Martinez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010). Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J. Soil Sci. Plant Nutr. 10: 293-319.
Crossref

 
 

Maurhofer M, Reimann C, Sacherer SP, Heebs S, Haas D, Defago G (1998). Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against necrosis virus. Phytopathology 88: 678-684.
Crossref

 
 

Mayak S, Tirosh T, Glick BR (2004). Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol. Biochem. 42(6): 565-572.
Crossref

 
 

McCully M (2005). The rhizosphere: The key functional unit in plant/soil/microbial interactions in the field. Implications for the understanding of allelopathic effects. Proceedings of the 4th World Congress on Allelopathy, "Establishing the Scientific Base", Wagga Wagga, New South Wales, Australia. pp. 43-49.

 
 

Mehnaz S, Lazarovits G (2006). Inoculation effects of Pseudomonasputida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microb. Ecol. 51(3):326-335.
Crossref

 
 

Mercado-Blanco J, van der Drift KM, Olsson PE, Thomas-Oates JE, van Loon LC, Bakker PA (2001). Analysis of the pmsCEAB gene cluster involved in biosynthesis of salicylic acid and the siderophore pseudomonine in the biocontrol strain Pseudomonas fluorescens WCS374. J. Bacteriol. 183: 1909-1920.
Crossref

 
 

Meyer JM (2000). Pyoverdines: Pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch. Microbiol. 174: 135-142.
Crossref

 
 

Mezaache-Aichour S, Guechi A, Nicklin J, Drider D, Prevost H, Strange RN (2012). Isolation, identification and antimicrobial activity of pseudomonads isolated from the rhizosphere of potatoes growing in Algeria. J. Plant Pathol. 94(1):89-98.

 
 

Miller JR, Hare EW, Wu J (1990). Quantitative characterization of the vegetation red edge reflectance. I. An inverted-Gaussian reflectance model. Int. J. Rem. Sens. 11:1755-1773.
Crossref

 
 

Moeinzadeh A, Sharif-Zadeh F, Ahmadzadeh M, Heidari Tajabadi F (2010). Biopriming of sunflower (Helianthus annuus L.) seed with Pseudomonas fluorescens for improvement of seed invigoration and seedling growth. Aust. J. Crop Sci. 4:564-570.

 
 

Moore ERB, Mau M, Arnscheidt A, Böttger EC, Hutson RA, Collins MD (1996).The determination and comparison of the 16S rRNA gene sequences of species of the genus Pseudomonas (sensu strictu) and estimation of the natural intrageneric relationships. Syst. Appl. Microbiol. 19: 478-492.
Crossref

 
 

Morgan JAW, Bending GD, White PJ (2005). Biological costs and benefits to plant microbe interactions in the rhizosphere. J. Exp. Bot. 56: 1729-1739.
Crossref

 
 

Moussa TAA, Rizk MA (2002). Biocontrol of sugarbeet pathogen Fusarium solani (Mart.) Sacc.byStreptomyces aureofaciens. Pak. J. Biol. Sci. 5: 556-559.
Crossref

 
 

Nahas E (1996). Factors determining rock phosphate solubilization by microorganisms isolated from soil. World J. Microbiol. Biotechnol. 12: 567-572.
Crossref

 
 

Nasr SA (2002). Stimulation of auxin biosynthesis by some bacterial, and yeast strains, Arab Univ. J. Agric. Sci. Ain Shams Univ., Cairo, 10:89-107.

 
 

Neilands JB (1989). Siderophore systems of bacteria and fungi, Metal Ions and Bacteria (Beveridge, T. J. and Doyle, R. J., eds), pp. 141-164, Wiley, Somerset, NJ, USA.

 
 

Neilands JB, Nakamura K (1991). Detection, determination, isolation, characterization and regulation of microbial iron chelates. In CRC Handbook of Microbial Iron Chelates. G. Winkelmann. London: CRC Press.

 
 

Nelson LM (2004). Plant growth promoting rhizobacteria (PGPR): Prospects for new inoculants. Online.Crop Management doi:101094/Cm-2004-0301-05-RV.

 
 

Nick G, de Lajudie P, Eardly BD (1999). Sinorhizobium arboris sp. nov. and Sinorhizobium kostiense sp. nov., isolated from leguminous trees in Sudan and Kenya. Int. J. Syst. Bacteriol. 49: 1359-1368.
Crossref

 
 

Noel TC, Sheng C, Yost CK, Pharis RP, MF Hynes (1996). Rhizobium leguminosarum as a plant growth promoting rhizobacterium: Direct growth promotion of canola and lettuce. Can. J. Microbiol. 42: 279-293.
Crossref

 
 

Nour SM, Fernandez MP, Normand P, Cleyet-Marel JC (1994). Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). Int. J. Syst. Bacteriol. 44:511-522.
Crossref

 
 

O'Sullivan DJ, Morris J, O'Gara F (1990). Identification of an additional ferric-siderophore uptake gene clustered with receptor, biosynthesis and fur-like regulatory genes in fluorescent

 

 

Pierson LS, Gaffiney T, Lam S, Gong F (1995). Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium Pseudomonas aureofaciens 30-84, FEMS Microbiol. Lett. 134: 299-307.
Crossref

 

Pierson LS, Keppenne VD, Wood DW (1994).Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30-84 is regulated by PhzR in response to cell density. J. Bacteriol. 176: 3966-3974.

 
 

Podile AR, Kishore GK (2006). Plant growth-promoting rhizobacteria. In: Plant Associated Bacteria. Gnanamanickam, SS(ed.). Springer, Dordrecht, Netherlands. pp. 195-230.
Crossref

 
 

Probanza A, Garcia JAI, Palomino MR, Ramos B, Manero FJG (2002). Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. Licheniformis CECT 5106 and B. pumilus CECT 5105). Appl. Soil Ecol. 20: 75-84.
Crossref

 
 

Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001). Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot. 20: 1-11.
Crossref

 
 

Ribaudo C, Krumpholz E, Cassan F, Bottini R, Cantore M, Cura A (2006). Azospirillum sp. promotes root hair development in tomato plants through a mechanism that involves ethylene. J. Plant Growth Regul. 24:175-185
Crossref

 
 

Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009). Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321: 305-339.
Crossref

 
 

Rome S, Fernandez MP, Brunel B, Normand P, Cleyet-Marel JC (1996). Sinorhizobium medicae sp. nov., isolated from annual Medicago spp. Int. J. Syst. Bacteriol. 46: 972-980.
Crossref

 
 

Römheld V (1987). Different strategies for iron acquisition in higher plants. Phys. Plant. 70: 231-234.
Crossref

 
 

Rothrock CS, Gottlieb D (1984). Role of antibiosis in antagonism of Streptomyces hygroscopicus var geldanus to Rhizoctonia solani in soil. Can. J. Microbiol. 30: 1440-1447.
Crossref

 
 

Rovira AD (1965). lnteractions between plant roots and soil microorganisms. Ann. Rev. Microbiol. 19: 241-266.
Crossref

 
 

Rovira AD (1969). Plant root exudates. Bot. Rev. 35: 35-57.
Crossref

 
 

Rovira AD (1991). Rhizosphere research-85years of progress and frustration. In: The Rhizosphere and Plant Growth, D.L. Keister and P.B. Cregan, (eds) Kluwer Academic Publishers, Boston, MA, pp. 3-13.
Crossref

 
 

Ryan PR, Dessaux Y, Thomashow LS, Weller DM (2009). Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321: 363-383.
Crossref

 
 

Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003). Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. USA 100: 4927-4932.
Crossref

 
 

Sarhan MM, Ezzat SM, Tohamy MRT, El-Essawy AA, Mohamed FA (2001). Biocontrol of Fusarium tomato wilt disease by Bacillus subtilis. Egypt. J. Microbiol. 36: 103-118.

 
 

Scarpellini M, Franzetti L, Galli A (2004).Development of PCR assay to identify Pseudomonas fluorescens and its biotype. FEMS Microbiol.Lett. 236: 257-260.
Crossref

 
 

Schippers B (1988). Biological control of pathogens with rhizobacteria. Philos. Trans. R. Soc. B-Biol. Sci. 318: 283-293.

 
 

Schippers B, Bakker AW, Bakker PAHM (1987). Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu. Rev. Phytopathol. 25: 339-358.
Crossref

 
 

Schmiedeknecht G, Issoufou I, Junge H, Bochow H (2001). Use of Bacillus subtilis as biocontrol agent. V. Biological control of diseases on maize and sunflowers. J. Plant Dis. Prot. 108: 500-512.

 
 

Schnider U, Keel C, Troxier J, Defago G, Haas D (1995). Amplification of the housekeeping sigma factor in Pseudomonas fluorescens CHA0 enhances antibiotic production and improves biocontrol abilities. J. Bacteriol. 177: 5387-5392.

 
 

Scholla MH, Elkan GH (1984). Rhizobium fredii sp. nov., a fastgrowing species that effectively nodulates soybeans. Int. J. Syst. Bacteriol. 34:484-486.
Crossref

 
 

Schroth MN, Loper JE, Hildebrand DC (1984). Bacteria as biocontrol agents of plant disease.In Current Perspectives in Microbial Ecologyed. Klug, M.J. and Reddy, C.A. pp. 362-369. Washington, DC: American Society for Microbiology.

 
 

Segovia L, Young JPW, Matinez-Romero E (1993). Reclassification of American Rhizobium leguminosarum Biovar Phaseoli type I strains as Rhizobium etli sp. nov. Int. J. Syst. Bacteriol. 43:374-377.
Crossref

 
 

Sekar S, Kandavel D (2010). Interaction of plant growth promoting rhizobacteria (PGPR) and endophytes with medicinal plants - New avenues for phytochemicals. J. Phytol. 2:91-100.

 
 

Shanmugam V, Vaidya M, Gulati A (2004). Evaluation of bio-control agents against Fusarium isolates infecting carnation and gladiolus. Ann. Plant Prot. Sci. 12(2): 314-320.

 
 

Sharma A, Johri BN (2003). Growth promoting influence of siderophore producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol. Res. 158: 243-248.
Crossref

 
 

Shirifi A, Zala M, Natsch A, Dejaga G (1998). Biocontrol of soil borne fungi plant diseases by 2,4 – diacetlyphloroglucinol producing Pseudomonas fluorescence. Eur. J. Plant Pathol. 104: 631-643.
Crossref

 
 

Siddiqui ZA, Mahmood I (1999). Role of bacteria in the management of plant parasitic nematodes: A review. Bioresour. Technol. 69: 167-179.
Crossref

 
 

Sikora RA (1992). Management of the antagonistic potential in agricultural ecosystems for the biological control of plant parasitic nematodes. Ann. Rev. Phytopat. 30: 245-270.
Crossref

 
 

Singh BK, Millard P, Whiteley AS, Murrell JC (2004). Unravelling rhizosphere microbial interactions: Opportunities and limitations. Trends Microbiol. 12: 386-393.
Crossref

 
 

Singh S, Kapoor KK (1999). Inoculation with phosphate-solubilizing microorganisms and a vesicular- arbuscular mycorrhizal fungus improves dry matter yield and nutrient uptake by wheat grown in a sandy soil. Biol. Fertil. Soils 28: 139-144.
Crossref

 
 

Sousa CS, Soares ACF, Garrido MS (2008). Characterization of streptomycetes with potential to promote plant growth and biocontrol. Sci. Agric. 65:50-55.
Crossref

 
 

Spaepen S, Vanderleyden J, Remans R (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. In: Unden F (ed) FEMS microbiol rev. Blackwell Publishing Ltd., New York. pp. 1-24.
Crossref

 
 

Steenhoudt O, Vanderleyden J (2000). Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: Genetic, biochemical and ecological aspects. FEMS Microbiol. Rev. 24: 487-506.
Crossref

 
 

Sturz AV, Nowak J (2000). Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. J. Appl. Soil Ecol. 15: 183-190.
Crossref

 
 

Stutz EW, Defago G, Kern H (1986). Naturally occurring fluorescent pseudomonads involved in suppression of black root rot of tobacco. Phytopathology 76: 181-185
Crossref

 
 

Subba Rao NS (1993). Biofertilizers in Agriculture and Forestry.Oxford and IBH Publishing Co. Pvt. Ltd, New Delhi 242 p.

 
 

Sudhakar P, Chattopadhyay GN, Gangwar SK, Ghosh JK (2000). Effect of foliar application of Azotobacter, Azospirillum and Beijerinckia on leaf yield and quality of mulberry (Morus alba). J. Agric. Sci. 134:227-234.
Crossref

 
 

Sumera Y, Bakar MAR, Malik KA, Hafeez FY (2004). Isolation, characterization and beneficial effects of rice associated plant growth promoting bacteria from Zanzibar soils. J. Basic Microbiol. 44: 241-252 (www CAB Abstracts 20043145747).

 
 

Sunish Kumar R, Ayyadurai N, Pandiaraja P, Reddy AV, Venkateswarlu Y, Prakash O, Sakthivel N (2005). Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broadspectrum antifungal activity andvbiofertilizing traits. J. Appl. Microbiol. 98: 145-154.
Crossref

 
 

Swain MR, Naskar SK, Ray RC (2007). Indole-3-acetic acid production and effect on sprouting of yam (Dioscorea rotundata L.) minisetts by Bacillus subtilis isolated from culturable cowdung microflora. Pol. J. Microbiol. 56: 103-110.

 
 

Swelim MA, Amer MM, Abd El-Ghany BF, and Omer AM (2003). Role of some soil bacteria and actinomycetes in controlling cucumber root-rot disease. Egypt. J. Microbiol. 38: 217-228.

 
 

Taechowisan T, Peberdy JF, Lumyong S (2003). Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J. Microbiol. Biotechnol. 19: 381–385.
Crossref

 
 

Terkina IA, Parfenova VV, Ahn TS (2006). Antagonistic activity of actinomycetes of Lake Baikal. Appl. Biochem. Microbiol. 42: 173-176.
Crossref

 
 

Thomashow LS, Weller DM (1996). Current concepts in the use of introduced bacteria for biological disease control: Mechanisms and antifungal metabolites, in: Plant-Microbe Interactions, Vol. I, G. Stacey and N. Keen, eds., Champman and Hall, New York, N.Y. pp. 187-235.
Crossref

 
 

Thongchai T, Chunhua L, Yuemao S (2005). Secondary metabolites from endophytic Streptomyces aureofaciens CMUAc 130 and their antifungal activity. J. Microbiol. 151: 1691-1695.
Crossref

 
 

Tran H, Ficke A, Asiimwe T, Höfte M, Raaijmakers JM (2007). Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol. 175: 731-742.
Crossref

 
 

Trivedi P, Pandey A, Palni LMS (2005). Carrier-based preparations of plant growth-promoting bacterial inoculants suitable for use in cooler regions. World J. Microbiol. Biotechnol. 21:941-945.
Crossref

 
 

van Loon LC (2007). Plant responses to plant growth-promoting rhizobacteria. Eur. J. Plant Pathol. 119:243–254.
Crossref

 
 

van Loon LC, Bakker PAHM (2003). Signalling in rhizobacteria-plant interactions. In: Root ecology. H. De Kroon and E. J. W. Visser (eds.) Berlin-Heidelberg: Springer-Verlag, Berlin Heidelberg. 287-330
Crossref

 
 

Velazquez E, Igual JM, Willems A (2001). Mesorhizobium chacoense sp. nov.: A novel species that nodulates Prosopis albain the Chaco Arido region (Argentina). Int. J. Syst. Evol. Microbiol. 51: 1011-1021.
Crossref

 
 

Verma SC, Ladha JK, Tripathi AK (2001). Evaluation of plant growth promoting and colonization from deep water rice. J. Biotechnol. 91: 127-141.
Crossref

 
 

Vespermann A, Kai M, Piechulla B (2007). Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl. Environ. Microbiol. 73(17): 5639-5641.
Crossref

 
 

Vessey JK (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255: 571-586.
Crossref

 
 

Vidhyasekaran P, Muthamilan M (1999). Evaluation of powder formulation of Pseudomonas fluorescens Pf1 for control of rice sheath blight. Biocontrol Sci. Technol. 9: 67-74.
Crossref

 
 

Von Graevenitz A (1977). The role of opportunistic bacteria in human disease. Ann. Rev. Microbiol. 31:447-471.
Crossref

 
 

Waisel Y, Eshel A, Katkafl U (1991). Plant Roots: The Hidden Half. Marcel Dekker, New York Inc. New York. 948 p. ISBN 0-8247-8393-X.

 
 

Wei G, Kloepper JW, Tuzun S (1996). Induced systemic resistance to cucumber diseases and increased plant growth by Plant growth promoting rhizobacteria under field conditions. Phytopathology 86: 221-224.
Crossref

 
 

Weller DM (1988). Biological control of soil borne plant pathogens in the rhizosphere with bacteria. Ann. Rev. Phytopathol. 26:379-407.
Crossref

 
 

Weller DM (2007). Pseudomonas biocontrol agents of soilborne pathogens: Looking back over 30 years. Phytopathology 97: 250-256.
Crossref

 
 

Weller DM, Cook RJ (1983). Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology 73: 463-469.
Crossref

 
 

Werner T, Motyka V, Laucou V, Smets R, Onckelen HV, Schmulling T (2003). Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15: 2532-2550.
Crossref

 
 

Whitelaw MA (2000). Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv. Agron. 69:99-151.
Crossref

 
 

Wood DW, Pierson LS (1996). The phzI gene of Pseudomonas aureofaciens (Pau) 30-84 is responsible for the production of a diffusible signal required for phenazine antibiotic production. Gene 168(1): 49-53.
Crossref

 
 

Yan Z, Reddy MS, Kloepper JW (2003). Survival and colonization of rhizobacteria in tomato transplant system. Can. J. Microbiol. 49: 383-389.
Crossref

 
 

Yanni YG, Rizk RY, Corich V, Squartini A, Corich V, Mateos P, Ladha JK, Dazzo FB (1997). Natural endophytic association between Rhizobium leguminosarum bvtrifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194: 99-114.
Crossref

 
 

Yuen GY, Schroth MN (1986). Interaction of Pseudomonas fluorescens strains E6 with ornamental plants and its effect on the composition of root colonization microflora. Phytopathology 76: 176-179.
Crossref

 
 

Zahir ZA, Muhammad A, Frankenberger WT (2004). Plant growth promoting rhizobacteria: Applications and perspectives in agriculture. Adv. Agron. 81:97-168.
Crossref

 
 

Zaied KA, El-Diasty ZM, El-Rhman MMA, El-Sanossy ASO (2009). Effect of horizontal DNA transfer between Azotobacter strains on protein patterns of Azotobacter transconjugants and biochemical traits in bioinoculated Okra (Abelmoschus esculentus, L.). Aust. J. Basic. Appl. Sci. 3(2): 748-760.

 
 

Zehnder G, Kloepper JW, Yao C, Wei G (1997). Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera: Chrysomelidae) by plant growth-promoting rhizobacteria. J. Econ. Entomol. 90: 391-396.
Crossref

 
 

Zulfitri A (2012). Pant growth promotion by IAA-producing rhizobacteria in ornamental plant propagation. A thesis Master of Science in Agriculture, Faculty of Agriculture and Environment, University of Sydney, New South Wales, Australia.