African Journal of
Microbiology Research

  • Abbreviation: Afr. J. Microbiol. Res.
  • Language: English
  • ISSN: 1996-0808
  • DOI: 10.5897/AJMR
  • Start Year: 2007
  • Published Articles: 5233

Review

Fluorescent pseudomonads: Milestones achieved in the last two decades

K. Sarker*
  • K. Sarker*
  • 1. Department of Microbiology, Vidyasagar University, Midnapore-721102, India; 2. AICRP on Vegetable Crops, Directorate of Research, B.C.K.V., Kalyani-741235, Nadia, India
  • Google Scholar
S. Dutta
  • S. Dutta
  • AICRP on Vegetable Crops, Directorate of Research, B.C.K.V., Kalyani-741235, Nadia, India
  • Google Scholar
P. K. Das Mohapatra
  • P. K. Das Mohapatra
  • Department of Microbiology, Vidyasagar University, Midnapore-721102, India
  • Google Scholar


  •  Received: 20 December 2013
  •  Accepted: 17 March 2014
  •  Published: 09 April 2014

References

Abbas A, Morrisey JP, Marquez PC, Sheehan MM, Delany IR, O'Gara F (2002). Characterization of interaction between the transcriptional repressor PhlF and its binding site at the phlA promoter in Pseudomonas fluorescens F113. J. Bacteriol. 184:3008-3016.
Crossref
 
Adhikari A, Sarker K, De Roy M, Bhattacharya I, Mandal T, Das Mohapatra PK, Dutta S (2013) Siderophore mediated antagonism of fluorescent Pseudomonads against soil borne plant pathogenic fungi in West Bengal, India. Afr. J. Microbiol. Res. 7(39):4689-4700.
 
Amein T, Omer Z, Welch C (2008). Application and evaluation of Pseudomonas strains for biocontrol of wheat seedling blight. Crop Protect. 27:532-536.
Crossref
 
Antonelli M, Reda R, Aleandri MP, Varvaro L, Chilosi G (2013). Plant growth-promoting bacteria from solarized soil with the ability to protect melon against root rot and vine decline caused by Monosporascus cannonballus. J. Phytopathol. 161(7-8):485-496
Crossref
 
Arima K, Imanaka H, Kausaka M, Fukuda A, Tameera C (1964). Pyrrolnitrin a new antibiotic substance produced by Pseudomonas. Agric Biol Chem. 28:575-576.
Crossref
 
Audenaert K, Pattery T, Cornelis P, Höfte M (2002). Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid pyochelin and pyocyanin. Mol Plant-Microbe Interact. 15:1147-1156.
Crossref
 
Baehler E, de Werra P, Wick LY, Pe’chy-Tarr M, Mathys S, Maurhofer M, Keel C (2006). Two novel MvaT-like global regulators control exoproduct formation and biocontrol activity in root-associated Pseudomonas fluorescens CHA0. Mol. Plant- Microbe Interact. 19:313-329.
Crossref
 
Baker KF, Cook R J (1974). Biological Control of Plant Pathogens WH Freeman San Francisco.
 
Bangera MG, Thomashaw LS (1996). Characterization of a genomic locus required for synthesis of the antibiotic 2 4-diacetylphloroglucinol by the biological control agent Pseudomonas fluorescens Q2-87. Mol. Plant-Microb Interact. 9:83-90.
Crossref
 
Barret M, Frey-Klett P, Boutin M, Guillerm-Erckelboudt AY, Martin F, Guillot L, Sarniguet A (2009). The plant pathogenic fungus Gaeumannomyces graminis var tritici improves bacterial growth and triggers early gene regulations in the biocontrol strain Pseudomonas fluorescens Pf29Arp. New Phytol. 181:435-447.
Crossref
 
Blaha D, Prigent-Combaret C, Mirza MS, Moe¨nne- LY (2006). Phylogeny of the 1-aminocyclopropane- 1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol. Ecol. 56:455-470.
Crossref
 
Bloemberg GV, Wijfjes AH, Lamers GE, Stuurman N, Lugtenberg BJ (2000). Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: new perspectives for studying microbial communities. Mol Plant-Microbe Interact. 13:1170-1176.
Crossref
 
Bodilis J, Calbrix R, Gue’rillon J, Me’rieau A, Pawlak B, Orange N, Barray S (2004). Phylogenetic relationships between environmental and clinical isolates of Pseudomonas fluorescens and related species deduced from 16S rRNA gene and OprF protein sequences. Syst. Appl. Microbiol. 27:93-108.
Crossref
 
Bossis E, Lemanceau P, Latour X, Gardan L (2000). The taxonomy of Pseudomonas fluorescens and Pseudomonas putida: current status and need for revision. Agronomie. 20:51-63.
Crossref
 
Budzikiewicz H (1993). Secondary metabolites: fluorescent pseudomonads. FEMS Microbiol Rev. 104:209-228.
Crossref
 
Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994). Green fluorescent protein as a marker for gene expression. Science. 263:802-805.
Crossref
 
Champion AB, Barrett EL, Palleroni NJ, Soderberg KL, Kunisawa R, Contopoulou R, Wilson AC, Doudoroff M (1980). Evolution in Pseudomonas fluorescens. J. Gen. Microbiol. 120(2):485-511.
Pubmed
 
Chin-A-Woeng TFC, Bloemberg GV, van der Bij AJ, van der Drift KMGM, Schripsema J, Kroon B, Scheffer RJ, Keel C, Bakker Peter AHM, Tichy H-V, de Bruijn FJ, Thomas-Oates JE, Lugtenberg BJJ (1998). Biocontrol by phenazine 1-carboxamide producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f sp radicis lycopersici. Mol Plant-Microb Interact. 11:1069-1077.
Crossref
 
Chin A, Woeng TFC, Bloemberg GV, Lugtenberg BJJ (2003). Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol. 157:503-523.
Crossref
 
Cook RJ, Thomashow LS, Weller DM, Fujimoto D, Mazzola M, Bangera G, Kim DS (1995). Molecular mechanisms of defense by rhizobacteria against root disease. Proc Natl Acad Sci USA. 92:4197-4201Corbell N, Loper JE (1995). A global regulator of secondary metabolite production in Pseudomonas fluorescens Pf-5. J. Bacteriol. 177:6230-6236.
 
Cuppels DA, Stipanovic RD, Stoessl A, Stothers JB (1987). The constitution and properties of a pyochelin-zinc complex. Can. J. Chem. 65:2126-2130.
Crossref
 
Dangl JL, Dietrich RA, Richberg MH (1996). Death do not have no mercy: cell death programs in plant-microbe interactions. Plant Cell. 8:1793-1807.
Pubmed
 
Davison J (1986). Plant beneficial bacteria. Bio. Technol. 6:282-286.
Crossref
 
De Meyer G, Höfte M (1997). Salicyclic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathol. 87:588-593.
Crossref
De Weert S, Dekkers LC, Kuiper I, Bloemberg GV, Lugtenberg BJJ (2004). Generation of enhanced competitive root-tip-colonizing Pseudomonas bacteria through accelerated evolution. J. Bacterio.186:3153-3159.
Crossref
 
Défago G, Haas D (1990). Pseudomonas as antagonists of soilborne plant pathogens: modes of action and genetic analysis. Soil Biochem. 6:249-291.
 
Delaney TP, Friedrich L, Ryals JA (1995). Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resisitance. Pross. Nat. Acad. Sci. USA. 92:6602-6606.
Crossref
 
Delany I, Sheenan MM, Fenton A, Bardin S, Aarons S, O'Gara F (2000). Regulation of production of the antifungal metabolite 2 4-diacetylphloroglucinol in Pseudomonas fluorescens F113 genetic analysis of phlF as a transcriptional repressor. Microbiol. 146:537-543.
 
Delany IR, Walsh UF, Ross I, Fenton AM, Corkery DM, O'Gara F (2001). Enhancing the biocontrol efficacy of Pseudomonas fluorescens F113 by altering the regulation and production of 2,4-diacetylphloroglucinol. Plant Soil. 232(1-2):195-205
Crossref
 
Delaney SM, Mavrodi DV, Bonsall RF, Thomashaw LS (2001). phzO a gene for the biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaceins 30-84. J. Bacteriol. 183:318-327.
Crossref
 
Delorme S, Philippot L, Edel-Hermann V, Deulvot C, Mougel C, Lemanceau P (2003). Comparative genetic diversity of narG narZ and 16S rRNA genes in fluorescent Pseudomonads. Appl. Environ. Microbiol. 69(2):1004-1012.
Crossref
 
Dow M, Newman MA, von RE (2000). The induction and modulation of plant defense responses by bacterial lipopolysaccharides. Annu. Rev. Phytopathol. 38:241-261.
Crossref
 
Dubuis C, Keel C, Haas D (2007). Dialogues of rootcolonizing biocontrol pseudomonads. Eur. J. Plant Pathol.119: 311-328.
Crossref
 
Duffy BK, Défago G (1999). Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl. Environ. Microbiol. 65:2429-2438.
Pubmed
 
Duijff BJ, Recorbet G, Bakker PAHM, Loper JE, Lemanceau P (1999). Microbial antagonism at the root level is involved in the suppression of fusarium wilt by the combination of nonpathogenic Fusarium oxysporum Fo47 and Pseudomonas putida WCS358. Phytopathology. 89:1073-1079.
Crossref
 
Elad Y, Baker R (1985). Influence of trace amounts of cations and siderophore-producing pseudomonads on chlamydospore germination of Fusarium oxysporum. Phytopathol. 75:1047-1052.
Crossref
 
Frapolli M, De’fago G, Moe¨nne-Loccoz Y (2007). Multilocus sequence analysis of biocontrol fluorescent Pseudomonas spp producing the antifungal compound 2 4- diacetylphloroglucinol. Environ. Microbiol. 9:1939-1955.
Crossref
 
Fu ZQ, Dong X (2013). Systemic acquired resistance turning local infection into global defense. Annu. Rev. Plant Biol. 64:839-63.
Crossref
 
Gaffney TD, Lam ST, Ligon J, Gates K, Frazelle A, Di Maio J, Hill S, Goodwin S, Torkewitz N, Allshouse AM, et al. (1994). Global regulation of antifungal factors by a Pseudomonas fluorescens biological control strain. Mol Plant Microb. Interact. 7:455-463.
 
García-García-Martínez J, Acinas SG, Antón AI, Rodríguez-Valera F (1999). Use of 16-23S ribosomal genes spacer region in studies of prokaryotic diversity. J. Microbiol. Meth. 36:55-64.
Crossref
 
Godfrey SAC, Marshall JW (2002). Soil on imported shipping containers provides a source of new Pseudomonad biodiversity into New Zealand. New Zealand J. Crop Hortic. Sci. 30:19-27.
Crossref
 
Gómez-Gómez L, Felix G, Boller T (1999). A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J. 18:277-284.
Crossref
 
Götz M, Gomes NCM, Dratwinski A, Costa R, Berg G, Peixoto R, Mendonça-Hagler L, Smalla K (2006). Survival of gfp-tagged antagonistic bacteria in the rhizosphere of tomato plants and their effects on the indigenous bacterial community. FEMS Microbiol. Ecol. 56:207-218.
Crossref
 
Grimont PAD, Vancanneyt M, Lefèvre M, Vandemeulebroecke K, Vauterin L, Brosch R, Kersters K, Grimont F (1996). Ability of Biolog and Biotype 100 systems to reveal the taxonomic diversity of the Pseudomonads. Syst. Appl. Microbiol. 19:510-527.
Crossref
 
Gürtler V, Stanisich VA (1996). New approaches to typing and identification of bacteria using the 16S - 23S rDNA spacer. Microbiol. 142:3-16.
Crossref
 
Guo JH, Qi HY, Guo YH, Ge HL, Gong LY, Zhang LX, Sun PH (2004). Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biol Control. 29:66-72.
Crossref
 
Gutell RR, Weiser B, Woese CR, Noller HF (1985). Compartive anatomy of 16S-like ribosomal RNA. Prog Nucleic Acid Res. Mol. Biol. 32:155-216.
Crossref
 
Haas D, Keel C (2003). Regulation of antibiotic production in root-colonizing Pseudomonas spp and relevance for biological control of plant disease. Annu. Rev. Phytopathol. 41:117-153.
Crossref
 
Haas D, Blumer C, Keel C (2000). Biocontrol ability of fluorescent pseudomonads genetically dissected importance of positive feedback regulation. Curr. Opin. Biotechnol. 11:209-297.
Crossref
 
Haas D, Défago G (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3(4):307-319.
Crossref
 
Hammer PE, Hill DS, Lam ST, van Pee KH, Ligon JM (1997). Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. Appl. Environ. Microbiol. 63:2147-2154.
Pubmed
 
Handelsman J, Stabb EV (1996). Biocontrol of soilborne plant pathogens. Plant Cell. 8:1855-1869.
Pubmed
He SY, Jin Q (2003). The Hrp pilus: learning from flagella. Curr. Opin. Microbiol. 6:15-19.
Crossref
 
Heeb S, Haas D (2001). Regulatory roles of GacS-GacA two component system in plant associated and other Gram-negative bacteria. Mol Plant-Microb Interact. 14:1351-1363.
Crossref
 
Höfte M (1993). Classes of microbial siderophores In Iron chelation in plants and soil microorganisms Edited by LL Barton and BC Hemming Academic Press San Diego Calif pp 3-26.
 
Iavicoli A, Boutet E, Buchala A, Métraux JP (2003). Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant-Microbe Interact. 16:851-858.
Crossref
 
Janse JD, Derks JHJ, Spit BE, Van DTWR (1992). Classification of fluorescent soft rot Pseudomonas bacteria including P marginalis strains using whole cell fatty acid analysis. Syst. Appl. Microbiol. 15:538-553.
Crossref
 
Jensen MA, Webster JA, Straus N (1993). Rapid identification of bacterial on the basis of polymerase chain reaction amplified ribosomal DNA spacer polymorphisms. Appl. Environ. Microbiol. 59(4):945-952.
Pubmed
 
Jonhson J, Palleroni NJ (1989) Desoxyribonucleic acid similarities among Pseudomonas species. Int. J. Syst. Bacteriol. 39:230-235.
Crossref
 
Justyna PG, Ewa K (2013). Induction of resistance against pathogens by β-aminobutyric acid. Acta Physiol. Plant. 35:1735-1748.
Crossref
 
Karthikeyan V, Gnanamanickam SS (2008). Biological control of Setaria blast Magnaporthe grisea with bacterial strains. Crop Protect. 27:263-267.
Crossref
 
Keel C, Voisard C, Berling CH, Kahr G, Défago G (1989). Iron sufficiency a prerequisite for suppression of tobacco black root rot by Pseudomonas fluorescens strain CHA0 under gnotobiotic conditions. Phytopathol. 79:584-589.
Crossref
 
Kirner S, Philip EH, Steven DH, Annett A, Ilona F, Laura JW, Mike L, Karl-Heinz vP, James ML (1998). Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens. J Bacteriol. 180(7):1939-1943.
Pubmed
 
Kitten T, Kinscherf T, McEvoy G, Willis DK (1998). A newly identified regulator is required for virulence and toxin production in Pseudomonas syringae. Mol. Microbiol. 28:917-929.
Crossref
 
Kloepper JW, Leong J, Teintze M, Schroth MN (1980). Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr Microbiol. 4:317-320.
Crossref
 
Kononova SK, Nesmeyanova MA (2002). Phosphonates and their degradation by microorganisms. Biochemistry Moscow. 67(2):184-195.
Crossref
 
Kragelund L, Nybroe O (1996). Competition between Pseudomonas fluorescens Ag1 and Alcaligenes eutrophus JMP134 pJP4 during colonization of barley roots. FEMS Microbiol. Ecol 20:41-51.
Crossref
 
Latifi AM, Winson K, Foglino M, Bycroft BW, Stewart GSAB, Lazdunski A, Williams P (1995). Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PA01. Mol. Microbiol. 17:333-343.
Crossref
 
Latour X, Corberand T, Laguerre G, Allard F, Lemanceau P (1996). The composition of fluorescent Pseudomonad populations associated with roots is influenced by plant and soil type. Appl. Environ. Microbiol. 62:2449-2456.
Pubmed
 
Leeman M, Den Ouden FM, Van Pelt JA, Dirkx FPM, Steijl H, Bakker PAHM, Schippers B (1996). Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology. 86:149-155.
Crossref
 
Leeman M, Van Pelt JA, Den OFM, Heinsbroek M, Bakker PAHM, Schippers B (1995). Induction of systemic resistance against fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology. 85:1021-1027.
Crossref
 
Lemanceau P, Corberand T, Gardan L, Latour X, Laguerre G, Boeufgras JM, Alabouvette C (1995). Effect of two plant species flax Linum Usitatissinum L and tomato Lycopersicon esculentum Mill on the diversity of soilborne populations of fluorescent pseudomonads. App Environ Microbiology. 61(3):1004-1012.
Pubmed
 
Locatelli L, Tarnawski S, Hamelin J, Rossi P, Aragno M, Fromin N (2002). Specific PCR amplification for the genus Pseudomonas targeting the 3' half of 16S rDNA and the whole 16S-23S rDNA spacer. Syst. Appl. Microbiol. 25:220-227.
Crossref
 
Loper JE, Buyer JS (1991). Siderophores in microbial interactions on plant surfaces. Mol. Plant Microbe. Interact. 4:5-13.
Crossref
 
Louws FJ, Fullbright DW, Stephens CT, de Bruijn FJ (1994). Specific genomic fingerprintings of phytopathogenic Xantomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl. Environ. Microbiol. 60:2286-2295.
Pubmed
 
Lübeck PS, Hansen M, Sørensen J (2000). Simultaneous detection of the establishment of seed-inoculated Pseudomonas fluorescens strain DR54 and native soil bacteria on sugar beet root surfaces using fluorescence antibody and in situ hybridization technique. FEMS Microbiol. Ecol. 33:11-19.
Crossref
 
Lupski JR, Weinstock GM (1992). Short interspersed repetitive DNA sequences in prokaryotic genomes. J. Bacteriol. 174:4525-4529.
Pubmed
 
Malamy J, Carr JP, Klessig DF, Raskin I (1990). Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science. 250(4983):1002-1004.
Crossref
 
Mann J (1987). Secondary Metabolism Clarendon Press Oxford UK 2nd edn.
 
Mark GL, Morrissey JP, Higgins P, O'Gara F (2006). Molecular-based strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications. FEMS Microbiol. Ecol. 56:167-177.
Crossref
 
Maurhofer M, Hase C, Meuwly P, Métraux JP, Défago G (1994). Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0: Influence of the gacA gene and of pyoverdine production. Phytopathology. 84:139-146.
Crossref
 
Maurhofer M, Reimmann C, Schmidli-Sacherer P, Heeb S, Haas D, Défago G (1998). Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology. 88:678-684.
Crossref
 
Mavrodi DV, Ksenzenko VN, Bonsall RF, Cook RJ, Boronin AM, Thomashaw LS (1998). A seven gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79. J. Bacteriol. 180:2541-2548.
Pubmed
 
Mavrodi OV, Mavrodi DV, Weller DM, Thomashow LS (2006). Role of ptsP orfT and sss recombinase genes in root colonization by Pseudomonas fluorescens Q8r1-96. Appl. Environ. Microbiol. 72:7111-7122.
Crossref
 
Mazzola M, Cook RJ, Thomashaw LS (1992). Weller D M and Pierson III L S Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl. Environ. Microbiol. 58:2616-2624.
Pubmed
 
McQuilken MP, Halmer P, Rhodes DJ (1998). Application of microorganisms to seeds In Formulation of Microbial Biopesticides: Beneficial Microorganisms Nematodes and Seed Treatments Edited by HD Burges Dordrecht: Kluwer Academic Publishers 255-285.
Crossref
 
Mercado-Blanco J, Van der Drift KMGM, Olsson P, Thomas- Oates JE, van Loon LC, Bakker PAHM (2001). Analysis of the pmsCEAB gene cluster involved in biosynthesis of salicylic acid and the siderophore pseudomonine in the biocontrol strain Pseudomonas fluorescens WCS374. J. Bacteriol. 183:1909-1920.
Crossref
 
Meyer JM, Abdallah MA (1978). The fluorescent pigment of Pseudomonas fluorescens: biosynthesis purification and physicochemical properties. J. Gen. Microbiol. 107:319-328.
Crossref
 
Meyer JM, Geoffroy VA, Baida N, Gardan L, Izard D, Lemanceau P, Achouak W, Palleroni NJ (2002). Siderophore typing a powerful tool for the identification of fluorescent and non-fluorescent pseudomonads. Appl. Environ. Microbiol. 68(6):2745-2753.
Crossref
 
Meziane H, Van der SI, Van Loon LC, Höfte M, Bakker PAHM (2005). Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol. Plant Pathol. 6:177-185.
Crossref
 
Misaghi IJ, Olsen MW, Cotty PJ, Donndelinger CR (1988). Fluorescent siderophore-mediated iron deprivation: a contingent biological control mechanism. Soil Biol. Biochem. 20:573-574.
Crossref
 
Mittal S, Johri BN (2008). Influence of management practices on the diversity of pseudomonads in rhizosphere soil of a marginal wheat cropping system. Biol. Fertil. Soil. 44:823-831.
Crossref
 
Molina L, Constantinescu F, Michel L, Reimmann C, Duffy B, De’fago G (2003). Degradation of pathogen quorum-sensing molecules by soil bacteria: a preventive and curative biological control mechanism. FEMS Microbiol. Ecol. 45:71-81.
Crossref
 
Moore ERB, Mau M, Arnscheidt A, Böttger EC, Hutson RA, Collins MD, Van Der PY, De Wachter R, Timmis KN (1996). The determination and comparison of the 16S rRNA gene sequences of species of the genus Pseudomonas sensu stricto and estimation of the natural intrageneric reletionships. Syst Appl Microbiol. 19:478-492.
Crossref
 
Neefs JM, Van der Peer Y, Hendriks L, De Wachter R (1990). Compilation of small ribosomal subunit RNA sequences. Nucleic Acid Res. 18:2237-2317.
Crossref
 
Neelamegam R, Ayyadurai N, Kayalvizhi N, Gunasekaran P (2012). Genotypic and Phenotypic Diversity of PGPR Fluorescent Pseudomonads Isolated from the Rhizosphere of Sugarcane Saccharum officinarum L. J. Microbiol. Biotechnol. 22(1):13-24.
Crossref
 
Normand P, Ponsonnet C, Nesme X, Neyra M, Simonet P (1996). ITS analysis of prokariotes In: Akkermans DL Van Elsas JD, Bruijn FJ eds Molecular Microbial Ecology Manual Kluwer Academic Publishers Dordrecht p 1-12.
 
Normander B, Hendriksen NB, Nybroe O (1999). Green fluorescent protein-marked Pseudomonas fluorescens: localization viability and activity in the natural barley rhizosphere. Appl. Environ. Microbiol. 65:4646-4651.
Pubmed
 
Notz R, Maurhofer M, Dubach H, Haas D and Défago G (2002). Fusaric acid producing strains of Fusarium oxysporum alter 2 4- diacetylphloroglucinol biosynthesis gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of the wheat. Appl Environ Microbiol. 68:2229-2235.
Crossref
 
Notz R, Maurhofer M, Schnider-Keel U, Duffy B, Haas D, Défago G (2001). Biotic factors affecting expression of the 2 4-diacetylpholoroglucinol biosynthesis gene phlA in Pseudomonas fluorescens biocontrol strain CHA0 in the rhizosphere. Phytopathology. pp 873-881.
Crossref
 
Nowak-Thompsan B, Chancey N, Wing JS, Gould SJ, Loper JE (1999). Characterization of pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J. Bacteriol. 181:2166-2174.
 
Nowak-Thompsan B, Gould SJ, Kraus J, Loper JE (1994). Production of 2 4-diacetylphloroglucinol by the biocontrol agent Pseudomonas fluorescens Pf-5. Can. J. Microbiol. 40:1064-1066.
Crossref
 
Palleroni NJ (1993). Pseudomonas classificassion: a new case history in the taxonomy of Gram- negative bacteria. Antonie van Leeuwenhoek. 64:231-251.
Crossref
 
Palleroni NJ, Ballard RW, Ralston E, Doudoroff M (1972). Deoxyribonucleic acid homologies among some Pseudomonas Species. J. Bacteriol. 110:1-11.
Pubmed
Palleroni NJ, Kunisawa R, Contopolou R, Doudoroff M (1973). Nucleic acid homologies in the genus Pseudomonas. J. Syst. Bacteriol. 23:333-339.
Crossref
 
Phoebe CH Jr, Combie J, Albert FG, Van Tran K, Cabrera J, Correira HJ, Guo Y, Lindermuth J, Rauert N, Galbraith W, Selitrennikoff CP (2001). Extremophilic organisms as an unexplored source of antifungal compounds. J Antibiot. 54 (1):56-65.
Crossref
 
Pierson LS, Wood DW, Pierson EA, Chancey ST (1998). N-acyl homoserine lactone-mediated gene regulation in biological control by fluorescent pseudomonads: current knowledge and future work. Eur. J. Plant Pathol. 104:1-9.
Crossref
 
Pieterse CMJ et al (2001). Cross-talk between plant defence signaling pathways: boost or burden? Ag Biotech Net. 3 ABN 068.
 
Pieterse CMJ, Van Wees SCM, Van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ and van Loon LC (1998). A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell. 10:1571-1580.
Pubmed
 
Preston GM (2004). Plant perceptions of plant growth-promoting Pseudomonas. Philos Trans R Soc London 359:907-918.
Crossref
 
Raaijmakers JM, Leeman M, Van Oorschot MMP, Van der SI, Schippers B, Bakker PAHM (1995). Doseresponse relationships in biological control of fusarium wilt of radish by Pseudomonas spp. Phytopathology. 85:1075-1081.
Crossref
 
Rainey PB (1999). Adaption of Pseudomonas fluorescens to the plant rhizosphere. Environ Microbiol. 1 :243-257.
Crossref
 
Ramette A, Frapolli M, De’fago G, Moe¨nne-Loccoz Y (2003). Phylogeny of HCN synthase-encoding hcnBC genes in biocontrol fluorescent pseudomonads and its relationship with host plant species and HCN synthesis ability. Mol Plant-Microbe Interact. 16:525-535.
Crossref
 
Ramette A, Moe¨nne-Loccoz Y, De’fago G (2001). Polymorphism of the polyketide synthase gene phlD in biocontrol fluorescent pseudomonads producing 2 4- diacetylphloroglucinol and comparison of PhlD with plant polyketide synthases. Mol Plant-Microbe Interact. 14:639-652.
Crossref
 
Ran LX, Li ZN, Wu GJ, Van Loon LC, Bakker PAHM (2005). Induction of systemic resistance against bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. Eur. J. Plant Pathol. 113:59-70.
Crossref
 
Reitz M, Oger P, Meyer A, Niehaus K, Farrand SK, Hallman J, Sikora R (2002). Importance of the 0- antigen core-region and lipid A of rhizobial lipopolysaccharides for the induction of systemic resistance in potato to Globodera pallida. Nematology. 4:73-79.
Crossref
 
Sanguin H, Kroneinsen L, Gazengel K, Kyselkova´ M, Remenant B, Prigent-Combaret C, Grundmann GL, Sarniguet A (2008). Development of a 16S rRNA microarray approach for the monitoring of rhizosphere Pseudomonas populations associated with the decline of take-all disease of wheat. Soil Biol. Biochem. 40:1028-1039.
Crossref
 
Schnider-Keel U, Arnaud S, Monika M, Caroline B, Brion D, Gigot-Bonnefoy C, Cornelia R, Notz R, Geneviève D, Dieter H, Christoph K (2000). Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and suppression by the bacterial metabolite salicylate and pyoluteorin. J Bacteriol. 182(5):1215-1225.
Crossref
 
Schnider-Keel U, Keel C, Blumer C, Troxer J, Défago G, Haas D (1995). Amplification of the housekeeping sigma factor in Pseudomonas fluorescens CHA0 enhances antibiotic production and improves biocontrol abilities. J. Bacteriol. 177:387- 5392.
 
Siddiqui IA, Shoukat SS (2003). Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: Importance of bacterial secondary metabolite 2 4-diacetylphloroglucinol. Soil Biol Biochem. 35:1615-1623
Crossref
 
Sørensen J, Jensen LE, Nybroe O (2001). Soil and rhizosphere as habitats for Pseudomonas inoculants: new knowledge on distribution activity and physiological state derived from micro-scale and single-cell studies. Plant Soil. 232:97-108.
Crossref
 
Spiers AJ, Buckling A, Rainey PB (2000). The causes of Pseudomonas diversity. Microbiology. 146:2345-2350.
Pubmed
 
Stevans AM, Dolan KM, Greenberg EP (1994). Synergistic binding of the Vibrio fischeri LuxR transcriptional activator domain and RNA polymerase to the lux promoter region. Proc. Natl. Acad. Sci. USA. 91:12619-12623.
Crossref
 
Sticher L, Mauch-Mani B, Métraux JP (1997). Systemic acquired resistance. Annu. Rev. Phytopathol. 35:235-270
Crossref
 
Suslow TV, Schroth MN (1982). Rhizobacteria of sugar beets effects of seed application and root colonization on yield. Phytopathology. 72:199-206.
Crossref
 
Ton J, De Vos M, Robben C, Buchala A, Métraux JP, Van Loon LC, Pieterse CM (2002). Characterization of Arabidopsis enhanced disease susceptibility mutants that are affected in systemic induced resistance. The plant J. 29:11-21.
Crossref
 
Troxler J, Zala M, Natsch A, Moënne-Loccoz Y, Défago G (1997). Autecology of the biocontrol strain Pseudomonas fluorescens CHA0 in the rhizosphere and inside roots at later stages of plant development. FEMS Microbiol. Ecol. 23:119-130.
Crossref
 
Validov S, Mavrodi O, De La Fuente L, Boronin A, Weller D, Thomashow L, Mavrodi D (2005). Antagonistic activity among 2 4-diacetylphloroglucinolproducing fluorescent Pseudomonas spp. FEMS Microbiol Lett. 242:249-256.
Crossref
 
Van Loon LC, Bakker PAHM, Pieterse CMJ (1998). Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36:453-483.
Crossref
 
Van Loon LC, Van Strien EA (1999). The families of pathogenesis-related proteins their zctivities and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol. 55:85-97.
Crossref
 
Van Peer R, Schippers B (1992). Lipopolysaccharides of plant-growth promoting Pseudomonas sp strain WCS417r induce resistance in carnation to fusarium wilt. Neth. J. Plant Pathol. 98:129-139.
Crossref
 
Van Peer R, Niemann GJ, Schippers B (1991). Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp strain WCS417r. Phytopathology. 81:728-734.
Crossref
 
Van Wees SCM, De Swart EAM, Van Pelt JA, van Loon LC, Pieterse CMJ (2000). Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 97:8711-8716.
Crossref
 
Van Wees SCM, Pieterse CMJ, Trijssenaar A, Van't Westende YAM, Hartog F, van Loon LC (1997). Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol Plant-Microbe Interact. 10:716-724.
Crossref
 
Versalovic J, Koeuth T, Lupski JR (1991). Distribution of repetitive DNA sequences in eubacteria and application of bacterial genomes. Nucleic Acid Res. 19:6823-6831.
Crossref
 
Visca P, Colotti G, Serino L, Verzili D, Orsi N, Chiancone E (1992). Metal regulation of siderophore synthesis in Pseudomonas aeruginosa and functional effects of siderophore-metal complexes. Appl. Environ. Microbiol. 58(9):2886-2893.
Pubmed
 
Wang C, Knill E, Glick BR, De’fago G (2000). Effect of transferring 1-aminocyclopropane-1-carboxylic acid ACC deaminase genes into Pseudomonas fluorescens strain CHA0 and its derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can. J. Microbiol. 46:1-10.
Crossref
 
Wang D, Lee SH, Seeve C, Yu JM, Pierson LS, Pierson EA (2013) Roles of the Gac-Rsm pathway in the regulation of phenazine biosynthesis in Pseudomonas chlororaphis 30-84. Microbiology open. 2(3):505-524.
 
Ward ER, Uknes SJ, Williams SC, Dincher SS Wiederhold, DL, Alexander DC, Ahl-Goy P, Metraux JP, Ryals JA (1991). Coordinate gene activity in response to agents that induce systemic acquired resistance. The plant cell. 3(10):1085-1094.
Pubmed
 
Wei B, Huang T, Dalwadi H, Sutton CL, Bruckner D and Braun J (2002). Pseudomonas fluorescens encodes the Crohn's disease-associated I2 sequence and T-cell superantigen. Infect Immun. 70:6567-6575.
Crossref
 
Wei G, Kloepper JW, Tuzun S (1991). Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology. 81:1508-1512.
Crossref
 
Weller DM, Van Pelt JA, Mavrodi DV, Pieterse CMJ, Bakker PAHM, Van Loon LC (2004). Induced systemic resistance (isr) in arabidopsis against pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol (dapg)-producing pseudomonas fluorescens. APS Annual Meeting. Phytopathology 94: S108
 
Weller DM (2007). Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology. 97:250-256.
Crossref
 
Wiyono S, Schulz DF, Wolf GA (2008). Improvement of the formulation and antagonistic activity of Pseudomonas fluorescens B5 through selective additives in the pelleting process. Biol. Control. 46:348-357.
Crossref
 
Woese CR (1987). Bacterial evolution. Microbiol. Rev. 51(2): 221-271.
Pubmed
 
Wood DW, Pierson III LS (1996). The phzI gene of Pseudomonas aureofaciens 30-84 is responsible for the production of a diffusible signal required for phenazine antibiotic production. 168(1):49-53.
 
Yadav S, Yadav S, Kaushik R, Saxena AK, Arora DK (2013). Genetic and functional diversity of fluorescent Pseudomonas from rhizospheric soils of wheat crop. J. Basic Microbio. doi: 10.1002/jobm.201200384.
Crossref
 
Zang Zhang RG, Pappas KM, Brace JL, Miller PC, Oulmassov T, Molyneaux JM, Anderson JC, Bashkin JK, Winans SC, Joachimiak A (2002). Structure of bacterial quorum sensing transcription factor complexed with pheromone and DNA. Nat. 417(6892):971-974.
Crossref
 
Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Felix G, Boller T (2004). Bacterial disease resistance in Arabidopsis through flagellin perception. Nat. 428:764-767.
Crossref