African Journal of
Pure and Applied Chemistry

  • Abbreviation: Afr. J. Pure Appl. Chem.
  • Language: English
  • ISSN: 1996-0840
  • DOI: 10.5897/AJPAC
  • Start Year: 2007
  • Published Articles: 368

Full Length Research Paper

Chemical modification of cellulose from palm kernel de-oiled cake to microcrystalline cellulose and its evaluation as a pharmaceutical excipient

Ezea Vincent Ndika
  • Ezea Vincent Ndika
  • Department of Applied Biochemistry, Faculty of Biological Sciences, Nnamdi Azikiwe University Awka, Anambra State, Nigeria.
  • Google Scholar
Umerie Sunday Chidozie
  • Umerie Sunday Chidozie
  • Department of Applied Biochemistry, Faculty of Biological Sciences, Nnamdi Azikiwe University Awka, Anambra State, Nigeria.
  • Google Scholar
Ubaoji Kingsley Ikechukwu
  • Ubaoji Kingsley Ikechukwu
  • Department of Applied Biochemistry, Faculty of Biological Sciences, Nnamdi Azikiwe University Awka, Anambra State, Nigeria.
  • Google Scholar


  •  Received: 31 January 2019
  •  Accepted: 02 July 2019
  •  Published: 31 July 2019

Abstract

Microcrystalline cellulose (MCC) is an important ingredient in pharmaceutical, food, cosmetic and other industries. In this research work, microcrystalline cellulose was synthesized from the alpha cellulose content of pretreated palm kernel de-oiled cake. The microcrystalline cellulose from palm kernel cake was obtained through acidified sodium chlorite, sodium hydroxide delignification followed by hydrogen peroxides bleaching and finally acid hydrolysis. The prepared microcrystalline cellulose was characterized by determining some physicochemical properties such as pH, bulk density, tap density, moisture content, ash content, Carrs compressibility index, Hausners ratio, powder porosity, angle of repose and compared with commercial-grade microcrystalline cellulose that is used in pharmaceutical industry as excipient. FT-IR was employed to expose the functional groups and the wavelength inherent by both the produced and commercial microcrystalline cellulose. The swelling property of MCC product was determined based on hydration capacity, swelling capacity and moisture sorption capacity. The results of the physicochemical parameters were given as pH (7.75 ± 0.40), bulk density (0.49 ± 0.67 gcm-3), tapped density (0.54 ± 0.03 gcm-3), moisture content (1.00 ± 0.5%), ash content (4.30 ± 0.35%), Carrs compressibility index (12.96 ± 0.27), Hausners ratio (1.15 ± 0.01), powder porosity (18.8 ± 0.55), angle of repose (27.4 ± 0.26), respectively. The swelling properties were also determined and compared favorably with the commercial grade of microcrystalline cellulose (p>0.05). The findings suggest that palm kernel cake can not only be used as feeds for animals but also a better source of cellulose for the production of microcrystalline cellulose for the industry owing to its availability and cost managements.  
 
Key words: Microcrystalline cellulose, palm kernel de-oiled cake, commercial grade, carr’s compressibility index, pharmaceutical excipient.