African Journal of
Pure and Applied Chemistry

  • Abbreviation: Afr. J. Pure Appl. Chem.
  • Language: English
  • ISSN: 1996-0840
  • DOI: 10.5897/AJPAC
  • Start Year: 2007
  • Published Articles: 368

Full Length Research Paper

Accessing the potential of Lonchocarpus laxiflorus roots (LLR) plant biomass to remove Cadmium (II) ions from aqueous solutions: Equilibrium and kinetic studies

A. H. Santuraki
  • A. H. Santuraki
  • Department of Chemical Sciences, Federal University Kashere, Gombe State ? Nigeria.
  • Google Scholar
A. A. Muazu
  • A. A. Muazu
  • Department of Chemical Sciences, Federal University Kashere, Gombe State ? Nigeria.
  • Google Scholar


  •  Received: 22 March 2015
  •  Accepted: 17 April 2015
  •  Published: 31 May 2015

References

Ajay KM, Mishra KJ, Rai PK, Chitra R, Nagar PN (2005). Removal of heavy metal ions from aqueous solution using carbon aerogel as an adsorbent. Indian J. Chem. Technol.10:72-78.
 
Babel S, Kurniawan TA (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: A review. J. Hazard. Mater. 97(1-3):219–243.
Crossref
 
Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999). A review of potentially low-cost biosorbents for heavy metals. Water Res. 33:2469-2479.
Crossref
 
Davis TA, Volesky B, Mucci A (2003). A review of the biochemistry of heavy metals biosorption by brown algae. Water Res. 37(18):4311-4330.
Crossref
 
Feng N, Guo X, Liang S, Zhu Y, Liu J (2010). Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. J. Hazardous Mater.185:49-54.
Crossref
 
Fouad K, Noureddin A, Mohammed CN (2012). Adsorptive removal of cadmium from aqueous solution by cork biomass. Equilibrium, dynamic and thermodynamic studies. Arab. J. Chem. Doi:10.1016/J. arabjc.2011.12.013
 
Freundlich HMF (1906). Uber die adsorption in lasugen. J. Phys. Chem. 57:385–470.
 
Garima M, Dhiraj S (2013). Accessing the Potential of Lingocellulosic Agricultural Waste Biomass for Removal of Ni (II) Metal Ions from Aqueous Streams. Int. J. Sci. Eng. Res. 4(40):1713-1720.
 
Gupta VK, Nayak A (2012). Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chem. Eng. J. 180:81–90.
Crossref
 
Ho YS, McKay G (1999). Pseudo––second order model for sorption processes. Process Biochem. 34:451–465.
Crossref
 
Igwe JC, Abia AA (2006). A bioseparation process for removing heavy metals from wastewater using biosorbent. Afr. J. Biotechnol. 5(12):1167-1177.
 
Kugbe J, Matsue N, Henmi T (2009). Synthesis of Linde Type A Zeolite-Goethite Nanocomposite as an Adsorbent for Cationic and Anionic Pollutants. J. Hazardous Mater. 164(2-3):929-935.
Crossref
 
Kumar KK, Prasad MK, Sarada B, Murthy CVR (2012). Studies on biosorption of Nickel using immobilized fungus. Rhizomucor tauricus. Bioresour. 7(4):5059-5073.
 
Kurniawan K, Thami Larabu P (2010). Removal of iron (111) from aqueous solution using Ricinus communes Seed Shell and polypyrole coated Ricinus communes seed shell activated carbon. Int. J. Chem. Tech. Res. CODEN (USA): IJCRGG. 2(1):26-35.
 
Lagergren S (1898). Zur theorie der sogenannten adsorption gelöster stoffe, K. Sven. Vetenskapsakad. Handl. 24:1-39.
 
Langmuir I (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40:1361–1403.
Crossref
 
Mahajan G, Umesh G, Vinod G (2013). Utilization Properties of Jatropha De- oiled cake for removal of Nickel (ii) from aqueous solutions. BioResources 8(4):5596-5611.
Crossref
 
Mahajan G, Sud D (2011). Kinetics and equilibrium studies of chromium (vi) metal ion remediation by Arachis hypogeal shells. Agreen approach. BioResources 6:3324-3338.
 
Meena AK, Mishra GK, Rai PK, Rajagopal C, Nagal PN (2005). Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent. J. Harzadous Mater. 122:161-170.
Crossref
 
Mishra SP (2013). Adsorption of Cu and Zn on calcium alginate immobilized penicillium sp. Indian J. Chem. Technol. 20:21-25.
 
Nida MS, Ahlam MF, Aklam A (2012). Biosorption of Cadmium(11) from Aqueous Solution by Prunus avium Leaves. Am. J. Environ. Eng. 2(5):123-127.
Crossref
 
Orhan Y, Buyukgungor H (1993). The removal of heavy metals by using agricultural wastes. Water Sci. nigricans. Water Res. 32:1437-1444.
 
Osemeahon SA, Esenowo DI (2012). Evaluation on the application of immobilized Konkoli (Maesopsis eminii) immobilized leaves for the removal of Pb2+ Cd2+ and Zn2+ in aqueous solution. Afr. J. Pure Appl. Chem. 6(5):59–64.
Crossref
 
Pradhan J, Das SN, Thaker RS (2007). Adsorption of hexavalent chromium from aqueous solution by using activated red mud. J. Colloid Interf. Sci. 217(1):137–141.
Crossref
 
Santhi IT, Manonmani S (2012). Adsorption of Methylene Blue from aqueous Solution onto a waste aquacultural Shell Powders (prawn waste). Sustain. Environ. Res. 22(1):45-51.
 
Sarin V, Paint KK (2006). Removal of chromium from indusrial waste water by using eucalphus bark. Bioresource Technol. 97: 15–20.
Crossref
 
Shin EW, Karthikeyan KG, Tshabalala MA (2007). Adsorption mechanism of cadmium on juniper bark and wood. Bioresour. Technol. 98:588-594.
Crossref
 
Singh R, Chadetric R, Kumar R, Bhatia D, Kumar Bishnoi NR, Singh N (2010). Biosorption Optimization of lead II, Cadmiun II and Copper II using response surface methodology and applicability in isotherm and thermodynamics modeling. J. Hazard. Mater. 174:623-634.
Crossref
 
Suantak KC, Baloma J, Shri C (2011). Removal of arsenic (iii) from aqueous solution by biosorption on to maize (Zea mays) leaves surface: parameters optimization sorption isotherms, kinetics and thermodynamic studies. Res. J. Chem. Sci. 1(5):73–79.
 
World Health Organisation (Ed). (2008). Guidelines for drinking water quality, world health organization, ISBN 9241544743, Geneva.