African Journal of
Pharmacy and Pharmacology

  • Abbreviation: Afr. J. Pharm. Pharmacol.
  • Language: English
  • ISSN: 1996-0816
  • DOI: 10.5897/AJPP
  • Start Year: 2007
  • Published Articles: 2285

Full Length Research Paper

24 h pre-incubation of EA.hy926 cells with angiotensin II regulates insulin-dependent activation of eNOS in a concentration-dependent manner

Ejebe D. E.
  • Ejebe D. E.
  • Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom.
  • Google Scholar


  •  Received: 01 November 2017
  •  Accepted: 16 February 2018
  •  Published: 30 September 2019

References

Abbasi F, Kohli P, Reaven GM, Knowles JW (2016). Hypertriglyceridemia: A simple approach to identify insulin resistance and enhanced cardio-metabolic risk in patients with prediabetes. Diabetes Research and Clinical Practice 120:156-161.
Crossref

 

Ahluwalia A, Foster P, Scotland RS, McLean PG, Mathur A, Perretti M, Moncada S, Hobbs AJ (2004). Antiinflammatory activity of soluble guanylate cyclase: cGMP-dependent down-regulation of P-selectin expression and leukocyte recruitment. Proceedings of the National Academy of Sciences of the United States of America 101(5):1386-1391.
Crossref

 

Altman SA, Randers L, Rao G (1993). Comparison of trypan blue dye exclusion and fluorometric assays for mammalian cell viability determinations. Biotechnology Progress 9(6):671-674.
Crossref

 

Andreozzi F, Laratta E, Sciacqua A, Perticone F, Sesti G (2004). Angiotensin II impairs the insulin signaling pathway promoting production of nitric oxide by inducing phosphorylation of insulin receptor substrate-1 on Ser312 and Ser616 in human umbilical vein endothelial cells. Circulation Research 94(9):1211-1218.
Crossref

 

Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, Capeau J, Feve B (2006). Recent advances in the relationship between obesity, inflammation, and insulin resistance. European Cytokine Network 17(1):4-12.

 

Brasier AR (2010). The nuclear factor-κB-interleukin-6 signalling pathway mediating vascular inflammation. Cardiovascular Research 86(2):211-218.
Crossref

 

Calles-Escandon J, Cipolla M (2001). Diabetes and endothelial dysfunction: a clinical perspective. Endocrine Reviews 22(1):36-52.
Crossref

 

Cefalu WT (2001). Insulin resistance: Cellular and clinical concepts. Experimental Biology and Medicine 226(1):3-26.
Crossref

 

Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, Deanfield J, Drexler H, Gerhard- Herman M, Herrington D, Vallance P (2002). Guidelines for the ultrasound assessment of endothelial-dependent flow- mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. Journal of the American College of Cardiology 39(2):257-265.
Crossref

 

Dimmeler S, Rippmann V, Weiland U, Haendeler J, Zeiher A M (1997). Angiotensin II induces apoptosis of human endothelial cells. Circulation Research 81(6):970-976.
Crossref

 

Esmon CT, Esmon NL (2011). The link between vascular features and thrombosis. Annu. Physiological Reviews 73:503-514.
Crossref

 

Fontes-Guerra PC, Cardoso CR, Muxfeldt ES, Salles GF (2015). Nitroglycerin-mediated, but not flow-mediated vasodilation, is associated with blunted nocturnal blood pressure fall in patients with resistant hypertension. Journal of Hypertension 33(8):1666-1675.
Crossref

 

Giles TD, Sander GE, Nossaman BD, Kadowitz PJ (2012). Impaired vasodilation in the pathogenesis of hypertension: focus on nitric oxide, endothelial‐derived hyperpolarizing factors, and prostaglandins. Journal of Clinical Hypertension 14(4):198-205.
Crossref

 

Greenfield JR, Campbell LV (2004). Insulin resistance and obesity. Clinics in Dermatology 22(4):289-295.
Crossref

 

Haffner SM, Mykkänen L, Festa A, Burke JP, Stern MP (2000). Insulin-resistant prediabetic subjects have more atherogenic risk factors than insulin-sensitive prediabetic subjects. Circulation 101(9): 975-980.
Crossref

 

Kubota T, Kubota N, Kumagai H, Yamaguchi S, Kozono H, Takahashi T, Inoue M, Itoh S, Takamoto I, Sasako T, Kumagai K, (2011). Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle. Cell Metabolism 13(3):294-307.
Crossref

 

Lamb RE, Goldstein BJ (2008). Modulating an oxidative‐inflammatory cascade: potential new treatment strategy for improving glucose metabolism, insulin resistance, and vascular function. International Journal of Clinical Practice 62(7):1087-1095.
Crossref

 

Li J, Geng XY, Cong XL (2016). PGC-1α ameliorates AngiotensinII-induced eNOS dysfunction in human aortic endothelial cells. Vascular Pharmacology 83:90-97.
Crossref

 

Lincoln TM, Dey N, Sellak H (2001). Invited review: cGMP-dependent protein kinase signaling mechanisms in smooth muscle: from the regulation of tone to gene expression. Journal of Applied Physiology 91(3):1421-1430.
Crossref

 

Ling WC, Lau YS, Murugan DD, Vanhoutte PM, Mustafa MR (2015). Sodium nitrite causes relaxation of the isolated rat aorta: By stimulating both endothelial NO synthase and activating soluble guanylyl cyclase in vascular smooth muscle. Vascular Pharmacology 74:87-92.
Crossref

 

Lizcano JM, Alessi DR (2002). The insulin signalling pathway. Current Biology 12(7):R236-R238.
Crossref

 

Lovren F, Pan Y, Quan A, Teoh H, Wang G, Shukla PC, Levitt KS, Oudit GY, Al-Omran M, Stewart DJ, Slutsky AS (2008). Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis. American Journal of Physiology-Heart and Circulatory Physiology 295(4):1377-1384.
Crossref

 

Mehta PK, Griendling KK (2007). Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am. J. Physiol. Journal of Cellular Physiology 292(1)82-97.
Crossref

 

Mohan V, Venkatraman JV, Pradeepa R (2010). Epidemiology of cardiovascular disease in type 2 diabetes: the Indian scenario. Journal of Diabetes Science and Technology 4(1):158-170.
Crossref

 

Mombouli JV, Vanhoutte PM (1999). Endothelial dysfunction: from physiology to therapy. Journal of Molecular and Cellular Cardiology 31(1):61-74.
Crossref

 

Montagnani M, Chen H, Barr VA, Quon MJ (2001). Insulin-stimulated activation of eNOS is independent of Ca2+ but requires phosphorylation by Akt at Ser1179. Journal of Biological Chemistry 276(32):30392-30398.
Crossref

 

Muniyappa R, Montagnani M, Koh KK, Quon MJ (2007). Cardiovascular actions of insulin. Endocrine Reviews 28(5):463-491.
Crossref

 

Nolan CJ, Damm P, Prentki M (2011). Type 2 diabetes across generations: from pathophysiology to prevention and management. The Lancet 378(9786):169-181.
Crossref

 

Notas G, Nifli AP, Kampa M, Vercauteren J, Kouroumalis E, Castanas E (2006). Resveratrol exerts its antiproliferative effect on HepG2 hepatocellular carcinoma cells, by inducing cell cycle arrest, and NOS activation. Biochim. Biophys. Acta (BBA)-General Subjects 1760(11):1657-1666.
Crossref

 

Pavo I, Jermendy G, Varkonyi TT, Kerenyi Z, Gyimesi A, Shoustov S, Shestakova M, Herz M, Johns D, Schluchter BJ, Festa A (2003). Effect of pioglitazone compared with metformin on glycemic control and indicators of insulin sensitivity in recently diagnosed patients with type 2 diabetes. Journal of Clinical Endocrinology and Metabolism 88(4):1637-1645.
Crossref

 

Prieto D, Contreras C, Sánchez A (2014). Endothelial dysfunction, obesity and insulin resistance. Current Vascular Pharmacology 12(3):412-426.
Crossref

 

Radomski MW, Palmer RM, Moncada S (1990). An L-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proceedings of the National Academy of Sciences 87(13):5193-5197.
Crossref

 

Repetto S, Salani B, Maggi D, Cordera R (2005). Insulin and IGF-I phosphorylate eNOS in HUVECs by a caveolin-1 dependent mechanism. Biochemical and Biophysical Research Communications 337(3):849-852.
Crossref

 

Sausbier M, Schubert R, Voigt V, Hirneiss C, Pfeifer A, Korth M, Schalkwijk CG, Stehouwer CD (2005). Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clinical Science 109(2):143-159.
Crossref

 

Shi Y, Lo CS, Padda R, Abdo S, Chenier I, Filep JG, Ingelfinger JR, Zhang SL, Chan JS (2015). Angiotensin-(1-7) prevents systemic hypertension, attenuates oxidative stress and tubulointerstitial fibrosis, and normalizes renal angiotensin- converting enzyme 2 and Mas receptor expression in diabetic mice. Clinical Science 128(10):649-663.
Crossref

 

Shiuchi T, Iwai M, Li HS, Wu L, Min LJ, Li JM, Horiuchi M (2004). Angiotensin II type-1 receptor blocker valsartan enhances insulin sensitivity in skeletal muscles of diabetic mice. Hypertension 43(5):1003-1010.
Crossref

 

Shoelson SE, Lee J, Goldfine AB (2006). Inflammation and insulin resistance. Journal of Clinical Investigation 116(7):1793-1801.
Crossref

 

Somlyo AP, Somlyo AV (2003). Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiological Reviews 83(4):1325-1358.
Crossref

 

Strober W (2001). Trypan blue exclusion test of cell viability. Current Protocols in Immunology, John Wiley and Sons, Appendix 3B.
Crossref

 

Surapongchai J, Prasannarong M, Bupha-Intr T, Saengsirisuwan V (2017). Angiotensin II induces differential insulin action in rat skeletal muscle. Journal of Endocrinology 232(3):547-560.
Crossref

 

Tangvarasittichai S (2015). Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World Journal of Diabetes 6(3):456-80.
Crossref

 

Tassone EJ, Sciacqua A, Andreozzi F, Presta I, Perticone M, Carnevale D, Casaburo M, Hribal ML, Sesti G, Perticone F (2013). Angiotensin (1-7) counteracts the negative effect of angiotensin II on insulin signalling in HUVECs. Cardiovascular Research 99(1):129-136.
Crossref

 

Wei Y, Sowers JR, Clark SE, Li W, Ferrario CM, Stump CS (2008). Angiotensin II-induced skeletal muscle insulin resistance mediated by NF-κB activation via NADPH oxidase. American Journal of Physiology-Endocrinology and Metabolism 294(2):345-351.
Crossref

 

Wheatcroft SB, Williams IL, Shah AM, Kearney MT (2003). Pathophysiological implications of insulin resistance on vascular endothelial function. Diabetes medications 20(4):255-268.
Crossref

 

Xiao X, Zhang C, Ma X, Miao H, Wang J, Liu L, Chen S, Zeng R, Chen Y, Bihl JC (2015). Angiotensin-(1-7) counteracts angiotensin II-induced dysfunction in cerebral endothelial cells via modulating Nox2/ROS and PI3K/NO pathways. Experimental Cell Research 336(1):58-65.
Crossref

 

Yang HY, Bian YF, Zhang HP, Gao F, Xiao CS, Liang B, Li J, Zhang NN, Yang ZM (2012). Angiotensin‐(1-7) treatment ameliorates angiotensin II‐induced apoptosis of human umbilical vein endothelial cells. Clinical and Experimental Pharmacology and Physiology 39(12):1004-1010.
Crossref

 

Yayama K, Hiyoshi H, Imazu D, Okamoto H (2006). Angiotensin II stimulates endothelial NO synthase phosphorylation in thoracic aorta of mice with abdominal aortic banding via type 2 receptor. Hypertension 48(5):958-964.
Crossref

 

Yuan Q, Yang J, Santulli G, Reiken SR, Wronska A, Kim MM, Osborne BW, Lacampagne A, Yin Y, Mark AR (2016). Maintenance of normal blood pressure is dependent on IP3R1-mediated regulation of eNOS. Proceedings of the National Academy of Sciences 113(30):8532-8537.
Crossref

 

Zhao Y, Vanhoutte PM, Leung SW (2015). Vascular nitric oxide: Beyond eNOS. Journal of Pharmacological Sciences 129(2):83-94.
Crossref