African Journal of
Plant Science

  • Abbreviation: Afr. J. Plant Sci.
  • Language: English
  • ISSN: 1996-0824
  • DOI: 10.5897/AJPS
  • Start Year: 2007
  • Published Articles: 809

Full Length Research Paper

Combining ability and gene action for bacterial wilt disease resistance in wild tomato (Solanum pimpinellifolium) and cultivated tomato (Solanum lycopersicum) genotypes

Faith Wangui Mathai
  • Faith Wangui Mathai
  • Department of Crops, Horticulture and Soils, Faculty of Agriculture, Egerton University, 536-20115, Njoro, Kenya.
  • Google Scholar
Pascal P. Okwiri Ojwang
  • Pascal P. Okwiri Ojwang
  • Department of Crops, Horticulture and Soils, Faculty of Agriculture, Egerton University, 536-20115, Njoro, Kenya.
  • Google Scholar
Robert Morwani Gesimba
  • Robert Morwani Gesimba
  • Department of Crops, Horticulture and Soils, Faculty of Agriculture, Egerton University, 536-20115, Njoro, Kenya.
  • Google Scholar


  •  Received: 20 August 2021
  •  Accepted: 08 December 2021
  •  Published: 30 April 2022

References

Ajjappalavara PS, Dharmatti PR, Salimath PM, Patil RV, Patil MS, Krishnaraj PU (2010). Genetics of bacterial wilt resistance in brinjal. Karnataka Journal of Agricultural Sciences 21(3):424-427.

 

Acharya B, Dutta S, Dutta S, Chattopadhyay A (2018). Breeding tomato for simultaneous improvement of processing quality, fruit yield, and dual disease tolerance. International Journal of Vegetable Science 24(5):407-423.
Crossref

 

Acquaah G (2009). Principles of plant genetics and breeding John Wiley and Sons.

 

Ahmed NN, Islam MR, Hossain MA, Meah MB, Hossain MM (2013). Determination of races and biovars of Ralstonia solanacearum causing bacterial wilt disease of potato. Journal of Agricultural Science 5(6):86.
Crossref

 

Arafa RA, Rakha MT, Soliman NEK, Moussa OM, Kamel SM, Shirasawa K (2017). Rapid identification of candidate genes for resistance to tomato late blight disease using next-generation sequencing technologies. PLoS One 12(12):e0189951.
Crossref

 

Ashkani SMY. Rafii MS, Gous M, Mahbod S, Parisa A, Fatah AT, Mohd SA, Abbas N (2015). Molecular breeding strategy and challenges towards improvement of blast disease resistance in rice crop." Frontiers in Plant Science 6:886.
Crossref

 

Baker RJ (1978). Issues in diallel analysis. Crop Science 18:533-536.
Crossref

 

Bokmeyer JM, Bonos SA, Meyer WA (2009). Inheritance characteristics of brown patch resistance in tall fescue. Crop Science 49(6):2302-2308.
Crossref

 

Da-Silva Costa KD, Dos Santos AMM, Dos Santos PR, Nascimento MR, Silva AMF, Albuquerque GMR, De Carvalho Filho JLS (2018). Inheritance of resistance to Ralstonia pseudosolanacearum in tomato. Euphytica 214(8):1-11.
Crossref

 

Dey SS, Singh N, Bhatia R, Parkash C, Chandel, C (2014). Genetic combining ability and heterosis for important vitamins and antioxidant pigments in cauliflower (Brassica oleracea var. botrytis L.). Euphytica 195(2):169-181.
Crossref

 

Dormatey R, Sun C, Ali K, Coulter JA, Bi Z, Bai J (2020). Gene pyramiding for sustainable Crop improvement against biotic and abiotic stresses. Agronomy 10(9):1255.
Crossref

 

Fasoula DA, Fasoula VA (1997). Gene action and plant breeding. Plant Breeding Reviews 15:315-374.
Crossref

 

FAOSTAT (2018). Food and Agriculture Organisation of the United Nations. Retrieved December 28, 2018, from FAOSTAT statistics database.

 

Fegan M, Prior P (2005). How complex is the Ralstonia solanacearum species complex. Bacterial wilt disease and the Ralstonia solanacearum species complex 1:449-461.

 

Fellahi ZEA, Hannachi A, Bouzerzour H, Boutekrabt A (2013). Line× tester mating design analysis for grain yield and yield related traits in bread wheat (Triticum aestivum L.). International Journal of Agronomy, 2013.
Crossref

 

Ganiyu SA, Popoola AR, Enikuomehin OA, Bodunde JG, Adedibu OB, Gurama AU (2017). Assessment of resistance status of some tomato genotypes to bacterial wilt disease and evaluation of SNP marker (LEOH19) for selection of BW resistant gene. Nigerian Journal of Biotechnology 34:54-64.
Crossref

 

Gashaw G, Alemu T, Tesfaye K (2014). Evaluation of disease incidence and severity and yield loss of finger millet varieties and mycelial growth inhibition of Pyricularia grisea isolates using biological antagonists and fungicides in vitro condition. Journal of Applied Biosciences 73:5883-5901.

 

Grimault V, Prior P, Anais G (1995). A monogenic dominant resistance of tomato to bacterial wilt I Hawaii 7996 is associated with plant colonization by Pseudomonas solanacearum. Journal of Phytopathology 143:349-352.
Crossref

 

Grover A, Chakrabarti SK, Azmi W, Khurana SMP (2012). Rapid method for isolation of PCR amplifiable genomic DNA of Ralstonia solanacearum infested in potato tubers. Advances in Microbiology 2:441.
Crossref

 

Guji MJ, Yetayew HT, Kidanu ED (2019). Yield loss of ginger (Zingiber officinale) due to bacterial wilt (Ralstonia solanacearum) in different wilt management systems in Ethiopia. Agriculture and Food Security 8(1):1-11.
Crossref

 

Hill WG, Goddard ME, Visscher PM (2008). Data and theory point to mainly additive genetic variance for complex traits. PLoS Genetics 4(2):e1000008.
Crossref

 

Ishihara T, Mitsuhara I, Takahashi H, Nakaho K (2012). Transcriptome analysis of quantitative resistance-specific response upon Ralstonia solanacearum infection in tomato. PLoS One 7(10):me46763.
Crossref

 

Jaetzold R, Hornetz B, Shisanya, CA, Schmidt H (2012). Farm management handbook of Kenya Vol I-IV (Western Central Eastern Nyanza Southern Rift Valley Northern Rift Valley Coast). Nairobi: Government Printers.

 

Jeger MJ, Viljanen-Rollinson SLH (2001). The use of the area under the disease-progress curve (AUDPC) to assess quantitative disease resistance in crop cultivars. Theoretical and Applied Genetics 102(1):32-40.
Crossref

 

Jyoti D, Sonia S, Vidyasagar V, Yudhvir S (2015). Inheritance of bacterial wilt resistance and performance of horticultural traits in bell pepper (Capsicum annuum var. grossum). Indian Journal of Agricultural Sciences 85:1498-1503.

 

Kargbo SS, Showemimo F, Akintokun, P, Porbeni J (2019). Combining ability analysis and gene action for yield and yield related traits in rice (Oryza sativa L.) under saline conditions. Journal of Plant Breeding and Genetics 7(2):63-74.
Crossref

 

Kearsey MJ, Pooni HS, Bulmer M (1996). The Genetical Analysis of Quantitative Traits. Genetical Research 68 (2):183.
Crossref

 

Kempe J, Sequeira L (1983). Biological control of bacterial wilt of potatoes: attempts to induce resistance by treating tubers with bacteria. Plant disease 67(5):499-503.
Crossref

 

Kempthorne O (1957). An introduction to genetic statistics. American Psychological Association. https://psycnet.apa.org/record/1958-01083-000

 

Kim SG, Hur OS, Ro NY, Ko HC, Rhee JH, Sung JS, Baek HJ (2016). Evaluation of resistance to Ralstonia solanacearum in tomato genetic resources at seedling stage. The Plant Pathology Journal 32(1):58.
Crossref

 

Krattinger SG, Jordan DR, Mace ES, Raghavan C, Luo MC, Keller B, Lagudah ES. (2013). Recent emergence of the wheat Lr34 multi-pathogen resistance: insights from haplotype analysis in wheat, rice, sorghum and Aegilops tauschii. Theoretical and applied genetics 126(3):663-672.
Crossref

 

Kumar S, Gowda PR, Saikia B, Debbarma J, Velmurugan N, Chikkaputtaiah C (2018). Screening of tomato genotypes against bacterial wilt (Ralstonia solanacearum) and validation of resistance linked DNA markers. Australasian Plant Pathology 47(4):365-374.
Crossref

 

Laghari KA, Sial MA, Arain MA, Mirbahar AA, Pirzada AJ, Dahot MU, Mangrio SM (2010). Heritability studies of yield and yield associated traits in bread wheat. Pakistan Journal of Botany 42(1):111-115.

 

Laeshita P, Arwiyanto T (2017). Resistance test of several tomato varieties to bacterial wilt diseases caused by Ralstonia solanacearum. Jurnal Perlindungan Tanaman Indonesia 21(1):51-53.

 

Makanda I, Tongoona P, Derera J, Sibiya J, Fato P (2010). Combining ability and cultivar superiority of sorghum germplasm for grain yield across tropical low- and mid-altitude environments. Field Crops Research 116:75-85.
Crossref

 

Monma S, Sakata Y, Matsunaga H (1997). Inheritance and selection efficiency of bacterial wilt resistance in tomato [Lycopersicon esculentum]. Japan Agricultural Research Quarterly 31(3):195-204.

 

Mosa HE, Abo El-Hares SM, Hassan MAA (2017). Evaluation and Classification of Maize Inbred Lines by Line X Tester Analysis for Grain Yield, Late Wilt and Downy Mildew Resistance. Journal of Plant Production 8(1):97-102.
Crossref

 

Moussa Z, El-Hersh MS, El-Khateeb AY (2017). Induction of potato resistance against bacterial wilt disease using Saccharomyces cerevisiae. Biotechnology 16(2):57-68.
Crossref

 

Mwangi JK, Nyende AB, Demo P, Matiru VN (2008). Detection of latent infection by Ralstonia solanacearum in potato (Solanum tuberosum) using stems instead of tubers. African Journal of Biotechnology 7:1644-1649.
Crossref

 

Namisy A, Chen JR, Prohens J, Metwally E, Elmahrouk M, Rakha M (2019). Screening cultivated eggplant and wild relatives for resistance to bacterial wilt (Ralstonia solanacearum). Agriculture 9(7):157.
Crossref

 

Nsabiyera V, Ochwo-Ssemakula M, Sseruwagi P, Ojiewo CO, Gibson P (2013). Combining ability for field resistance to disease, fruit yield and yield factors among hot pepper (Capsicum annuum L.) genotypes in Uganda. International Journal of Plant Breeding 7(1):12-21.

 

Ochilo WN, Nyamasyo GN, Kilalo D, Otieno W, Otipa M, Chege F, Lingeera EK (2019). Characteristics and production constraints of smallholder tomato production in Kenya. Scientific African 2:e00014:4.
Crossref

 

Odogwu BA, Nkalubo S, Rubaihayo P (2016). Genetic analysis of resistance to common bean rust disease in Uganda. RUFORUM Working Document Series (ISSN 1607-9345) 14(1):699-705.

 

Oliveira WF, Giordano LB, Lopes CA (1999). Inheritance of resistance to bacterial wilt in tomato. Fitopatologia 24:49-53.

 

Oppong-Sekyere D, Akromah R, Ozias-Akins P, Laary JK, Gimode D (2019). Heritability studies of drought tolerance in groundnuts using the North Carolina design II fashion and variance component method. Journal of Plant Breeding and Crop Science 11(9):234-253.
Crossref

 

Oussou GF, Sikirou R, Afoha SA, Dossoumou ME, Boukari SA, Komlan FA, Zocli B (2020). Resistance Assessment of Tomato (Solanum Lycopersicum L.) and Gboma (Solanum Macrocarpon L.) Cultivars Against Bacterial Wilt Caused By Ralstonia Solanacearum in Benin. Pakistan Journal of Phytopathology 32(2):241-249.
Crossref

 

Pandiarana N, Durwas SV, Seth T, Chatterjee S, Dutta S, Chattopadhyay A (2015). Enhancement of post-harvest fruit quality and leaf curl disease tolerance in tomato through hybrid breeding. Journal of Applied and Natural Science 7(2):606-615.
Crossref

 

Pilet-Nayel ML, Moury B, Caffier V, Montarry J, Kerlan, MC, Fournet S, Delourme R (2017). Quantitative resistance to plant pathogens in pyramiding strategies for durable crop protection. Frontiers in Plant Science 8:1838.
Crossref

 

Prior P, Ailloud F, Dalsing BL, Remenant B, Sanchez B, Allen C (2016). Genomic and proteomic evidence supporting the division of the plant pathogen Ralstonia solanacearum into three species. BMC Genomics 17(1):1-11.
Crossref

 

Team RC (2014). R: A language and environment for statistical computing. Vienna." Austria 2014.

 

Rohini IB, Rangasswamy KT, Achari R (2017). Isolation and characterization of Ralstonia solanacearum causing bacterial wilt of solanaceae crops. International Journal of Current Microbiology and Applied Sciences 6:1173-1190.
Crossref

 

Schmidt P, Hartung J, Bennewitz J, Piepho HP (2019). Heritability in plant breeding on a genotype-difference basis. Genetics 212(4):991-1008.
Crossref

 

Seleim MA, Abo-Elyousr KA, Abd-El-Moneem KM, Saead FA (2014). First report of bacterial wilt caused by Ralstonia solanacearum biovar 2 race 1 on tomato in Egypt. The Plant Pathology Journal 30(3):299.
Crossref

 

Sharma P, Saikia MK (2013). Management of late blight of potato through chemicals. IOSR Journal of Agriculture and Veterinary Science 2:23-36.
Crossref

 

Sharma KC, Sharma LK (2015). Genetic studies of bacterial wilt resistance in tomato crosses under mid-hill conditions of Himachal Pradesh. Journal of Hill Agriculture 6(1):136-137.
Crossref

 

Singh S, Singh DR, Kumar K, Birah A (2014). Eco-friendly management modules for bacterial wilt (Ralstonia solanacearum) of tomato for protected cultivation in a tropical island ecosystem. Biological Agriculture and Horticulture 30:219-227.
Crossref

 

Singh N, Phukan T, Sharma PL, Kabyashree K, Barman A, Kumar R, Ray SK (2018). An innovative root inoculation method to study Ralstonia solanacearum pathogenicity in tomato seedlings. Phytopathology 108(4):436-442.
Crossref

 

Singh V, Singh K (2018). Additive Genetic Variance. In Vonk J, Shackelford T (eds) Encyclopedia of Animal Cognition and Behavior. Springer, Cham.
Crossref

 

Sprague GF, Tatum LA (1942). General vs. specific combining ability in single crosses of corn. Journal of the American Society of Agronomy 34(10):923-932.
Crossref

 

St. Clair DA (2010). Quantitative disease resistance and quantitative resistance loci in breeding. Annual Review of Phytopathology 48:247-268.
Crossref

 

Suvi WT, Shimelis H, Laing M, Mathew I, Shayanowako AI (2021). Determining the Combining Ability and Gene Action for Rice Yellow Mottle Virus Disease Resistance and Agronomic Traits in Rice (Oryza sativa L.). Agronomy 11(1):12.
Crossref

 

Thakur AK, Kohli UK, Kumar M (2004). Inheritance of resistance to bacterial wilt in tomato (Lycopersicon esculentum Mill.). Indian Journal of Genetics and Plant Breeding 64(1):79-80.

 

Tyagi V, Dhillon SK, Kaushik P, Kaur G (2018). Characterization for drought tolerance and physiological efficiency in novel cytoplasmic male sterile sources of sunflower (Helianthus annuus L.). Agronomy 8(10):232.
Crossref

 

Velásquez AC, Castroverde CDM, He SY (2018). Plant-pathogen warfare under changing climate conditions. Current Biology 28(10):R619-R634.
Crossref

 

Verma OP, Srivastava HK (2004). Genetic component and combining ability analyses in relation to heterosis for yield and associated traits using three diverse rice-growing ecosystems. Field Crops Research 88:91-102.
Crossref

 

Wang L, Zhou X, Ren X, Huang L, Luo H, Chen, Y, Jiang H (2018). A major and stable QTL for bacterial wilt resistance on chromosome B02 identified using a high-density SNP-based genetic linkage map in cultivated peanut Yuanza 9102 derived population. Frontiers in Genetics 9:652.
Crossref

 

Waqar-Ul-Haq M, Malik F, Rashid M, Munir M, Akram Z (2008). Evaluation and estimation of heritability and genetic advancement for yield related attributes in wheat lines. Pakistan Journal of Botany 40(4):1699-1702.

 

Wassimi NN, Isleib TG, Hosfield GL (1986). Fixed effect genetic analysis of a diallel cross in dry beans (Phaseolus vulgaris L.). Theoretical and Applied Genetics 72(4):449-454.
Crossref

 

Wilcoxson RD, Skovmand B, Atif AH (1975). Evaluation of wheat cultivars for ability to retard development of stem rust. Annals of Applied Biology 80:275-28.
Crossref