African Journal of
Plant Science

  • Abbreviation: Afr. J. Plant Sci.
  • Language: English
  • ISSN: 1996-0824
  • DOI: 10.5897/AJPS
  • Start Year: 2007
  • Published Articles: 808

Full Length Research Paper

The suppression of Arabidopsis succinic semialdehyde dehydrogenase (SSADH) phenotype by using ethyl methane-sulfonate mutagenesis (EMS)

Dereje W. Mekonnen
  • Dereje W. Mekonnen
  • Botanical Institute II, Cologne Biocenter, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.
  • Google Scholar
Frank Ludewig
  • Frank Ludewig
  • Botanical Institute II, Cologne Biocenter, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.
  • Google Scholar


  •  Received: 29 March 2017
  •  Accepted: 12 May 2017
  •  Published: 31 July 2017

References

Akaboshi S, Hogema BM, Novelletto A, Malaspina P, Salomons GS, Maropoulos GD, Jakobs C, Grompe M, Gibson KM (2003). Mutational spectrum of the succinate semialdehyde dehydrogenase (ALDH5A1) gene and functional analysis of 27 novel disease-causing mutations in patients with SSADH deficiency. Hum. Mutat. 22:442-450.
Crossref

 

Bouche N, Fait A, Bouchez D, Moller SG, Fromm H (2003). Mitochondrial succinic- semialdehyde dehydrogenase of the caminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proc. Natl. Acad. Sci. 100:6843-6848.
Crossref

 

Busch KB, Fromm H (1999). Plant succinic semialdehyde dehydrogenase. cloning, purification, localization in mitochondria, and regulation by adeninenucleotides. Plant Physiol. 121(2):589-598.
Crossref

 

Eid A, Ali Z, Mahfouz MM (2016). High efficiency of targeted mutagenesis in Arabidopsis via meiotic promoter-driven expression of Cas9 endonuclease. Plant Cell Rep. 35(7):1555-1558.
Crossref

 

Fait A, Yellin A, Fromm H (2004). GABA shunt deficiencies and accumulation of reactive oxygen intermediates: insight from Arabidopsis mutants. FEBS Lett. 579:415-420.
Crossref

 

Fontenot EB, DiTusa SF, Kato N, Olivier DM, Dale R, Lin WY, Chiou TJ, Macnaughtan MA, Smith AP (2015). Increased phosphate transport of Arabidopsis thaliana Pht1;1 by site-directed mutagenesis of tyrosine 312 may be attributed to the disruption of homomeric interactions. Plant Cell Environ. 38(10):2012-2022.
Crossref

 

Hogema BM, Gupta M, Senephansiri H, Burlingame TG, Taylor M, Jakobs C, Schutgens RB, Froestl W, Snead OC, Diaz-Arrastia R, Bottiglieri T (2001). Pharmacologic rescue of lethal seizures in mice deficient in succinate semialdehyde dehydrogenase. Nat. Genet. 29:212-216.
Crossref

 

Hyun Y, Kim J, Cho SW, Choi Y, Kim JS, Coupland G (2014). Site-directed mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles. Planta 241(1):271-284.
Crossref

 

Jakobs C, Bojasch M, Mönch E, Rating D, Siemes H, Hanefeld F (1981). Urinary excretion of gamma-hydroxybutyric acid in a patient with neurological abnormalities. The probability of the new inborn error of metabolism. Clin. Chim. Acta 111:169-178.
Crossref

 

Kim YS, Schumaker KS, Zhu JK (2006). EMS Mutagenesis of Arabidopsis. Methods in Molecular Biology 323: Humana Press Inc., Totowa, NJ.

 

Knerr I, Pearl PL, Bottiglieri T, Snead OC, Jakobs C, Gibson KM (2007). Therapeutic concepts in succinate semialdehyde dehydrogenase (SSADH; ALDH5a1) deficiency (gamma-hydroxybutyric aciduria). Hypotheses evolved from 25 years of patient evaluation, studies in Aldh5a1-/- mice and characterization of gamma-hydroxybutyric acid pharmacology. J. Inherit. Metab. Dis. 30(3):279-294.
Crossref

 

Konieczny A, Ausubel FM (1993). A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 4(2):403-410.
Crossref

 

Lee EM, Lee SS, Tripathi BN, Jung HS, Cao GP, Lee Y, Singh S, Hong SH, Lee KW, Lee SY, Cho JY, Chung BY (2015). Site-directed mutagenesis substituting cysteine for serine in 2-Cys peroxiredoxin (2-Cys Prx A) of Arabidopsis thaliana effectively improves its peroxidase and chaperone functions. Ann. Bot. 116(4):713-725.
Crossref

 

Ludewig F, Hueser A, Fromm H, Beauclair L, Bouche N (2008). Mutants of GABA transaminase (POP2) suppress the severe phenotype of succinic semialdehyde dehydrogenase (ssadh) mutants in Arabidopsis. PLoS One 3(10):e3383.
Crossref

 

Majeed HN, Zia MA, Yang M, Sheikh MA, Bhatti IA (2015). Cloning and site directed mutagenesis of UGT76E1 leads to changed substrate activity in Arabidopsis thaliana. Int. J. Agric. Biol. 17(6):1125-1132.
Crossref

 

Mekonnen DW, Fluegge UI, Ludewig F (2016). gamma-aminobutyric acid depletion affects stomata closure and drought tolerance of Arabidopsis thaliana. Plant Sci. 245:25-34.
Crossref

 

Mekonnen DW, Ludwig F (2016). Phenotypic and chemotypic studies using Arabidopsis and yeast reveal that GHB converts to SSA and induce toxicity. Plant Mol. Biol. 91(4-5):429-440.
Crossref

 

Ng PC, Henikoff S (2006). Predicting the effects of amino acid substitutions on protein function. Annu. Rev. Genomics Hum. Genet. 7:61-80.
Crossref

 

Ramesh SA, Tyerman SD, Xu B, Bose J, Kaur S, Conn V, Domingos P, Ullah S, Wege S, Shabala S, Feijó JA (2015). GABA signaling modulates plant growth by directly regulating the activity of plant-specific anion transporters. Nat. Commun. 6:7879.
Crossref

 

Renault H, Roussel V, El Amrani A, Arzel M, Renault D, Bouchereau A, Deleu C (2010). The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. BMC Plant Biol. 10:1-16.
Crossref

 

Schimel S, Fauser F, Puchta H (2014). The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J. 80(6):1139-1150.
Crossref

 

Scholz S, Reichelt M, Mekonnen DW, Ludewig F, Mithoefer A (2015). Insect herbivory elicited GABA accumulation in plants is a wound-induced, direct, systemic and jasmonate-independent defense response. Front. Plant Sci. 6:1128.
Crossref