International Journal of
Science and Technology Education Research

  • Abbreviation: Int. J. Sci. Technol. Educ. Res.
  • Language: English
  • ISSN: 2141-6559
  • DOI: 10.5897/IJSTER
  • Start Year: 2010
  • Published Articles: 72

Full Length Research Paper

Single basis function method for solving diffusion convection equations

Sunday Babuba
  • Sunday Babuba
  • Department of Mathematics, Federal University Dutse, Ibrahim Aliyu Bye-Pass, P. M. B. 7156, Dutse, Jigawa State, Nigeria.
  • Google Scholar


  •  Received: 26 June 2017
  •  Accepted: 24 August 2017
  •  Published: 30 September 2017

References

Adam A, David R (2002). One dimensional heat equation. 

 

Awoyemi DO (2002). An Algorithmic collocation approach for direct solution of special fourth–order initial value problems of ordinary differential equations. J. Nigerian Association of Math. Phys. 6:271-284.

 
 

Awoyemi DO (2003). A p-stable linear multistep method for solving general third order Ordinary differential equations. Int. J. Comput. Math. 80(8):987-993.
Crossref

 
 

Bao W, Jaksch P, Markowich PA (2003). Numerical solution of the Gross – Pitaevskii equation for Bose – Einstein condensation. J. Compt. Phys. 187(1):318-342.
Crossref

 
 

Benner P, Mena H (2004): BDF methods for large scale differential Riccati equations. Proc. of Mathematical theory of network and systems. MTNS. Edited by Moore, B. D., Motmans, B., Willems, J., Dooren, P.V. & Blondel, V.

 
 

Bensoussan A, Da Prato G, Delfour M, Mitter S (2007). Representation and control of infinite dimensional systems. 2nd edition. Birkhauser: Boston, MA.
Crossref

 
 

Motmans B, Willems J, Dooren PV, Blondel V, Biazar J, Ebrahimi H (2005). An approximation to the solution of hyperbolic equation by a domain decomposition method and comparison with characteristics method. Appl. Math. Comput.163:633-648.
Crossref

 
 

Brown PLT (1979). A transient heat conduction problem. AICHE J. 16:207-215.

 
 

Chawla MM, Katti CP (1979). Finite difference methods for two-point boundary value problems involving high-order differential equations. BIT. 19:27-39.
Crossref

 
 

Cook RD (1974). Concepts and Application of Finite Element Analysis: NY: Wiley Eastern Limited.

 
 

Crandall SH (1955). An optimum implicit recurrence formula for the heat conduction equation. Q. Appl. Math. 13(3):318-320.
Crossref

 
 

Crane RL, Klopfenstein RW (1965). A predictor – corrector algorithm with increased range of absolute stability. JACM 12:227-237.
Crossref

 
 

Crank J, Nicolson P (1947). A practical method for numerical evaluation of solutions of partial differential equations of heat conduction type. Proc. Camb. Phil. Soc. 6:32-50.
Crossref

 
 

Dahlquist G, Bjorck A (1974). Numerical methods. NY: Prentice Hall.

 
 

Dehghan M (2003). Numerical solution of a parabolic equation with non-local boundary specification. Appl. Math. Comput. 145, 185-194.
Crossref

 
 

Dieci L (1992). Numerical analysis. SIAM J. 29(3):781-815.

 
 

Douglas J (1961). A survey of numerical methods for parabolic differential equations in advances in computer II. Academic Press. D' Yakonov, Ye G (1963). On the application of disintegrating difference operators. USSR Computational Mathematics and Mathematical Physics, 3(2):511-515.

 
 

Eyaya BE (2010). Computation of the matrix exponential with application to linear parabolic PDEs.

 
 

Fox L (1962). Numerical Solution of Ordinary and Partial Differential Equation. New York: Pergamon.

 
 

Penzl T (2000). A cyclic low-rank Smith method for large sparse Lyapunov equations. SIAM J. Sci. Comput. 21(4):1401-1418
Crossref

 
 

Pierre J (2008). Numerical solution of the dirichlet problem for elliptic parabolic equations. SIAM J. Soc. Ind. Appl. Math. 6(3):458-466.

 
 

Richard LB, Albert C (1981). Numerical analysis. Berlin: Prindle, Weber and Schmidt, Inc.

 
 

Richard L, Burden J, Douglas F (2001). Numerical analysis. Seventh ed., Berlin: Thomson Learning Academic Resource Center.

 
 

Saumaya B, Neela N, Amiya YY (2012). Semi discrete Galerkin method for equations of Motion arising in Kelvin – Voitght model of viscoelastic fluid flow. J. Pure Appl. Sci. 3(2 & 3):321-343.

 
 

Yildiz B, Subasi M (2001). On the optimal control problem for linear Schrodinger equation. Appl. Math. Comput.121:373-381.
Crossref

 
 

Zheyin HR, Qiang X (2012). An approximation of incompressible miscible displacement in porous media by mixed finite elements and symmetric finite volume element method of characteristics. Appl. Math. Computat. Elsevier 143:654-672.