International Journal of
Water Resources and Environmental Engineering

  • Abbreviation: Int. J. Water Res. Environ. Eng.
  • Language: English
  • ISSN: 2141-6613
  • DOI: 10.5897/IJWREE
  • Start Year: 2009
  • Published Articles: 347

Full Length Research Paper

Applications of soft tools to solve hydrological problems for an integrated Indian catchment

Vidyanand Sayagavi
  • Vidyanand Sayagavi
  • Research Scholar, Datta Meghe College of Engineering, Airoli, Navi Mumbai, India.
  • Google Scholar
Shrikant Charhate
  • Shrikant Charhate
  • Pillai HOC College of Engineering and Technology, Rasayani, India.
  • Google Scholar


  •  Received: 29 April 2017
  •  Accepted: 14 June 2017
  •  Published: 31 July 2017

References

Abbott MB, Bathurst JC, Cunge JA, O'Connell PE, Rasmussen J. (1986). An introduction to the Europeen hydrological system – Syst'eme Hydrologique Europeen, SHE, 1: History and philosophy of a physically-based, distributed modelling system. J. Hydrol. 87:45–59.
Crossref

 

Babovic V, Keijzer M (2000). Genetic programming as model induction engine. J. Hydro inf. 2(1):35-60.

 
 

Bergström S (1976). Development and application of a conceptual runoff model for Scandinavian catchments. SMHI report, Nr RHO 7.

 
 

Beven KJ, Calver A, Morris EM (1987). The Institute of Hydrology distributed model. Institute of Hydrology Report 98, Wallingford, UK.

 
 

Beven KJ, Kirkby MJ (1979). A physically based variable contributing area model of basin hydrology. Hydrol. Sci. Bull. 24:43-69.
Crossref

 
 

Brameier M, Banzhaf W (2001). Evolving teams of predictors with linear genetic programming. Genet. Program. Evolvable Mach. 2(4):381-407.
Crossref

 
 

Brameier M (2004). On Linear Genetic Programming University of Dortmund, PhD thesis.

 
 

Chang FJ, Chang LC, Huang HL (2002). Real-time recurrent learning neural network for stream-flow forecasting. Hydrol. Process. 16:2577-2588.
Crossref

 
 

Charhate SB, Kote AS (2009). Seasonal reservoir inflow prediction using advance data driven method. J. Appl. Hydrol. 22(2):76-83.

 
 

Googhari SK, Huang YF, Ghazali AHB, Shui LT (2010). Neural Networks for Forecasting Daily Reservoir Inflows. Pertanika J. Sci. Technol. 18(1):33-41.

 
 

Grayson RB, Moore ID, Mc Mahon TA (1992). Physically based hydrologic modelling. Water Resour. Res. 28(10):2639-2658.
Crossref

 
 

Guven A (2009). Linear genetic programming for time-series modelling of daily flow rate. J Earth Syst. Sci. 118(2):137-146.
Crossref

 
 

Haykin S (1994). Neural Networks: a comprehensive foundation. MacMillan, New York. Hydrology 87:45-59.

 
 

Jain A, Kumar AM (2007). Hybrid neural network models for hydrologic time series forecasting. J. Appl. Soft. Comput. 7(2):585-592.
Crossref

 
 

Jothiprakash V, Magar RB, Sunil K (2009). Rainfall-runoff models using Adaptive Neuro-Fuzzy Inference System (ANFIS) for an intermittent river. Int. J. Artif. Intell. 3(A09):1-23.

 
 

Jothiprakash V, Magar RB (2012). Multi-time-step ahead daily and hourly intermittent reservoir inflow prediction by artificial intelligent technique using lumped and distributed data. J. Hydro. 450-451:293-307.
Crossref

 
 

Kote S, Jothiprakash V (2009). Monthly Reservoir Inflow Modeling using Time Lagged Recurrent Networks. Int. J. Tomogr. Simul. 12(F09):64-84.

 
 

Koza JR (1992). Genetic Programming: on the Programming of Computers by Means of Natural Selection. The MIT Press, Cambridge, MA.

 
 

Londhe S, Charhate S (2010). Comparison of data- driven modelling techniques for river flow forecasting. Hydrol. Sci. J. 55(7):1163–1174.
Crossref

 
 

Mandal T, Jothiprakash V (2012). Short-term rainfall prediction using ANN and MT techniques. ISH J. Hydraulic Eng. 18(1):20-26.
Crossref

 
 

De Vos NJ, Rientjes THM (2005).Constraints of ANNs for rainfall-runoff modelling. Hydrol. Earth Syst. Sci. 9:111–126.
Crossref

 
 

Patel SS, Ramachandran P (2015). A comparison of machine learning techniques for Modelling River flow time series: the case of Upper Cauvery River Basin. Water Res. Manage. 29:589–602.
Crossref

 
 

Quinlan JR (1992). Learning with continuous classes. In: Proc. AI'92 (Fifth Australian Joint Conf. on Artificial Intelligence. World Scientific, Singapore. pp. 343-348.

 
 

Sivakumar B, Jayewardene AW, Fernando TMKG (2002). River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches. J. Hydrol. 265(1-4):225-245.
Crossref

 
 

Suykens JAK, De BJ, Lukas L, Vandewalle J (2002). Weighted Least Squares Support Vector Machines: Robustness and Sparse Approximation. Neuro comput. 48(1-4):85-105.
Crossref

 
 

Thirumalaiah K, Deo M (2000). Hydrological Forecasting Using Neural Networks. J. Hydro. Eng. 5(2):180-189.
Crossref

 
 

Todini E (1998). Rainfall-runoff modelling - past, present and future. J. Hydrol. 100:341-352.
Crossref

 
 

Tokar AS, Johnson PA (1999). Rainfall-runoff modelling using artificial neural networks. J. Hydrol. Eng. ASCE 4(3):232-239.
Crossref

 
 

Whigham PA, Crapper PF (2001). Modelling Rainfall–Runoff using Genetic Prog. Math. Comput. Model. 33 (6-7):707-721.
Crossref

 
 

Zhang Y, Chiew FHS (2009). Relative merits of different methods tor runoff prediction in ungauged catchments. Water Resour. Res. 45 W:07412.