Full Length Research Paper
Abstract
This paper considers the flow of a conducting viscous incompressible fluid between two non-conducting parallel discs, when the magnetic field was applied perpendicularly to the discs. The upper disc is in steady rotation, while the lower one is a stationary porous disc. The whole flow is divided into two regions: the free fluid region (between two parallel discs) and the porous region (this flow is of porous material). The approximate solutions are obtained by solving the Navier-Stokes equations in the free fluid region, and the Darcy’s equations in the porous region with suitable boundary conditions at the interface. The effects of rotation, Hartmann number and forced parameter have been considered on the flow characteristics and are illustrated by graphs. The flow is essentially dominated by rotational effect as well as by the forced parameter.
Key words: Magneto-hydrodynamic (MHD), incompressible fluid, forced flow. MSC (2000): 76D10, 76W05, 80A20.
Copyright © 2024 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0