Scientific Research and Essays

  • Abbreviation: Sci. Res. Essays
  • Language: English
  • ISSN: 1992-2248
  • DOI: 10.5897/SRE
  • Start Year: 2006
  • Published Articles: 2748

Full Length Research Paper

The improved generalized Riccati equation mapping method and its application for solving a nonlinear partial differential equation (PDE) describing the dynamics of ionic currents along microtubules

Elsayed M. E. Zayed
  • Elsayed M. E. Zayed
  • Mathematics Department, Faculty of Sciences, Zagazig University, Zagazig, Egypt.
  • Google Scholar
Yasser A. Amer
  • Yasser A. Amer
  • Mathematics Department, Faculty of Sciences, Zagazig University, Zagazig, Egypt.
  • Google Scholar
Reham M. A. Shohib
  • Reham M. A. Shohib
  • Mathematics Department, Faculty of Sciences, Zagazig University, Zagazig, Egypt.
  • Google Scholar


  •  Received: 10 December 2013
  •  Accepted: 10 April 2014
  •  Published: 30 April 2014

References

 
Abdou MA (2007).The extended tanh method and its applications for solving nonlinear physical models. Appl. Math. Comput.190(1):988-996.
Crossref
 
Ablowitz MJ, Clarkson PA (1991). Solitons, nonlinear evolution equations and inverse scattering transform. Cambridge University Press, New York.
Crossref
 
Aslan I (2010). A note on the (G'/G) -expansion method again. Appl. Math. Comput. 217(2):937-938.
Crossref
 
Aslan I (2011). Exact and explicit solutions to the discrete nonlinear Schrödinger equation with a saturable nonlinearity. Phys. Lett. A. 375(47):4214-4217.
Crossref
 
Aslan I (2012a). Some exact solutions for Toda type lattice differential equations using the improved (G'/G)– expansion method. Math. Methods Appl. Sci. 35(4):474-481.
Crossref
 
Aslan I (2012b). The discrete (G'/G) -expansion method applied to the differential-difference Burgers equation and the relativistic Toda lattice system. Numer. Methods Par. Diff. Eqs. 28(1):127-137.
Crossref
 
Aslan I (2011). Comment on application of exp-function method (3+1)dimensional nonlinear evolution equation.[Comput Math. Appl. 56(2008):1451-1456], Comput. Math. Appl. 61(6):1700-1703.
Crossref
 
Ayhan B, Bekir A (2012). The (G'/G) -expansion method for the nonlinear lattice equations. Commun. Nonlin. Sci. Numer. Simul. 17(9):3490-3498.
Crossref
 
Bekir A (2008). Application of the (G'/G) -expansion method for nonlinear evolution equations. Phys. Lett. A. 372(19):3400-3406.
Crossref
 
Bekir A (2009). The exp-function for Ostrovsky equation. Int. J. Nonlin. Sci. Numer. Simul. 10:735-739.
Crossref
 
Bekir A (2010). Application of exp-function method for nonlinear differential-difference equations. Appl. Math. Comput. 215(11):4049-4053.
Crossref
 
Chen Y, Wang Q (2005). Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic function solutions to (1+1)-dimensional dispersive long wave equation. Chaos Solit. Fract. 24(3):745-757.
Crossref
 
Fan E (2000). Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A. 277:212-218.
Crossref
 
Freedman H, Rezania V, Priel A, Carpenter E, Noskov SY, Tuszynski JA (2010). Model of Ionic Currents through Microtubule Nanopores and the Lumen. Phys. Rev. E. 81(5):051912.
Crossref
 
He JH, Wu XH.(2006). Exp-function method for nonlinear wave equations. Chaos Solit. Fract. 30(3):700-708.
Crossref
 
Hirota R (1971). Exact solutions of the KdV equation for multiple collisions of solutions. Phys. Rev. Lett. 27:1192-1194.
Crossref
 
Ilic DI, Sataric MV, Ralevic N (2009), Atomic and molecular physics: Microtubule as a transmission line for ionic currents, Chin. Phys. Lett. 26:073101-073103.
Crossref
 
Kudryashov NA (1988). Exact solutions of a generalized evolution of wave dynamics. J. Appl. Math. Mech. 52:361-365.
Crossref
 
Kudryashov NA (1990). Exact solutions of a generalized Kuramoto-Sivashinsky equation. Phys. Lett. A. 147(5-6):287-291.
Crossref
 
Kudryashov NA (1991).On types of nonlinear non integrable equations with exact solutions. Phys. Lett. A. 155(4-5):269-275.
Crossref
 
Liu S, Z. Fu Z, Zhao Q (2001). Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A. 289(1-2):69-74.
Crossref
 
Lu D (2005). Jacobi elliptic function solutions for two variant Boussinesq equations, Chaos Solit. Fract. 24(5): 1373.
Crossref
 
Miura MR (1978). Backlund transformation, Springer, Berlin, Germany.
 
Rogers C, Shadwick WF (1982). Baclund Transformation and Their Applications. Academic Press, New York. p. 161.
 
Sataric MV, Ilic DI, Ralevic NM and Tuszynski JA (2009). A nonlinear model of ionic wave propagation along microtubules. Eur. Biophys. J. Biophys. Lett. 38:637-647.
Crossref
 
Sataric MV, Sekulic DL, Zivanov MB (2010). Solitonic ionic currents along microtubules. J. Comput. Theor. Nanosci. 7:2281-2290.
Crossref
 
Sekulic DL, Sataric MV, Zivanov MB (2011a). Symbolic computation of some new nonlinear partial differential equations of nanobiosciences using modified extended tanh-function method. Appl. Math. Comput. 218:3499-3506.
Crossref
 
Sekulic DL, Sataric BM, Tuszynski JA, Sataric MV (2011b). Nonlinear ionic pulses along microtubules. Eur. Phys. J. E. Soft Matter 34(5):1-11.
Crossref
 
Sekulić DL, Satarić MV (2012). Microtubule as nanobioelectronic nonlinear circuit, Serbian J. Elect. Eng. 9:107-119.
Crossref
 
Sekulic DL, Sataric MV,Zivanov MB, Bajic JS (2012). Soliton-like pulses along electrical nonlinear transmission line, Electr. Elect. Eng.121:53-58.
 
Wang M, Li X, Zhang J (2008). The (G'/G)-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A. 372:417-423.
Crossref
 
Weiss J, Tabor T, Carnevale G (1983). The Painlevé property for partial differential equations. J. Math. Phys. 24(3):552-526.
Crossref
 
Yusufoglu E (2008).New solitary for the MBBM equations using exp-function method. Phys. Lett. A. 372:442-446.
Crossref
 
Yusufoglu E, Bekir A (2008). Exact solutions of coupled nonlinear Klein-Gordon equations. Math. Comput. Model. 48:1694-1700.
Crossref
 
Zayed EME (2009). The (G'/G) -expansion method and its applications to some nonlinear evolution equations in the mathematical physics. J. Appl. Math. Comput. 30:89-103.
Crossref
 
Zayed EME (2010). Traveling wave solutions for higher dimensional nonlinear evolution equations using the (G'/G)-expansion method. J. Appl. Math. Inf. 28:383-395.
 
Zayed EME, Arnous AH (2013). Many exact solutions for nonlinear dynamics of DNA model using the generalized Riccati equation mapping method. Sci. Res. Essays 8:340-346.
 
Zayed EME, Amer YA, Shohib RMA (2013). The improved Riccati equation mapping method for constructing many families of exact solutions for nonlinear partial differential equation on nanobioscience. Int. J. Phys. Sci. 8(22):1246-1255.
 
Zhang S (2008). Application of exp-function method to high–dimensional nonlinear evolution equation. Chaos Solit. Fract.38:270-276.
Crossref
 
Zhang S, Xia T (2008). A further improved tanh function method exactly solving the (2+1)- dimensional dispersive long wave equations. Appl. Math. E-Notes 8:58-66.
 
Zhang S, Tong JL, Wang W (2008). A generalized (G'/G)-Expansion method for the mKdV equation with variable coefficients. Phys. Lett. A. 372:2254-2257.
Crossref
 
Zhu SD (2008). The generalized Riccati equation mapping method in nonlinear evolution equation: application to (2+1)-dimensional Boiti-lion-Pempinelle equation. Chaos Solit. Fract. 37:1335-1342.
Crossref