African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12258

Full Length Research Paper

Morph-physiological responses to water deficit in parental genotypes of Medicago truncatula recombinant inbred lines

Mounawer Badri
  • Mounawer Badri
  • Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif 2050, Tunisia.
  • Google Scholar
Saoussen Mahfoudh
  • Saoussen Mahfoudh
  • Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif 2050, Tunisia.
  • Google Scholar
Chedly Abdelly
  • Chedly Abdelly
  • Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif 2050, Tunisia.
  • Google Scholar


  •  Received: 29 November 2015
  •  Accepted: 29 April 2016
  •  Published: 22 June 2016

Abstract

Medicago truncatula is an omni-Mediterranean species grown as an annual forage legume. In addition to its small genome size and simple genetics, M. truncatula harbors several attributes which make it an attractive model legume. In this study, we investigated morphological and photosynthetic responses to water deficit in parental genotypes of M. truncatula recombinant inbred lines. Ten parental lines were cultivated under three water regimes (100% of field capacity (FC), 50% FC and 30% FC) and were harvested at flowering time and at the end of their lifecycle. Results from ANOVA showed that variability of measured parameters was explained by the effects of line, treatment and their interaction with treatment factor recorded the highest values. Out of the 27 traits, 14 were influenced by the line x treatment interaction. High to moderate broad-sense heritability (H²) were observed for most of the traits under control treatment and drought stress. Most of the correlations between measured traits were positive under the three water regimes. The flowering time was positively correlated with aerial and root growth rate. The tolerance of lines to water deficit seems to depend, in particular, on their ability to maintain higher photosynthetic activity. In 30% FC, principal component analysis clustered lines into two groups. The Jemalong A17 line was the least affected for most phenotypic parameters. Hence, all populations of recombinant inbred lines derived from crosses between Jemalong A17 and the remaining lines were useful for the identification of the genetic determinants for tolerance to water deficit in M. truncatula.

Key words: M. truncatula, parental lines, recombinant inbred lines, water deficit, morphological traits, photosynthetic parameters.