African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12487

Full Length Research Paper

Fourier transform infrared spectroscopic analysis of maize (Zea mays) subjected to progressive drought reveals involvement of lipids, amides and carbohydrates

Chukwuma C. Ogbaga
  • Chukwuma C. Ogbaga
  • Department of Biological Sciences, Nile University of Nigeria, Abuja, Nigeria.
  • Google Scholar
Matthew A. E. Miller
  • Matthew A. E. Miller
  • Agrimetrics, The University of Reading, United Kingdom.
  • Google Scholar
Habib-ur-Rehman Athar
  • Habib-ur-Rehman Athar
  • Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan.
  • Google Scholar
Giles N. Johnson
  • Giles N. Johnson
  • School of Earth and Environmental Sciences, The University of Manchester, United Kingdom.
  • Google Scholar


  •  Received: 27 January 2017
  •  Accepted: 18 April 2017
  •  Published: 03 May 2017

References

Amir RM, Anjum FM, Khan MI, Khan MR, Pasha I, Nadeem M (2013). Application of Fourier transform infrared (FTIR) spectroscopy for the identification of wheat varieties. J. Food Sci. Technol. 50:1018-1023.
Crossref

 

Anjum SA, Tanveer M, Ashraf U, Hussain S, Shahzad B, Khan I, Wang L (2016) Effect of progressive drought stress on growth, leaf gas exchange, and antioxidant production in two maize cultivars. Environ. Sci. Pollut. Res. 23:17132-17141.
Crossref

 
 

Athar HR, Ambreen S, Javed M, Hina M, Rasul M, Zafar ZU, Manzoor H, Ogbaga CC, Afzal M, Al-Qurainy F, Ashraf M (2016). Influence of sub-lethal crude oil on growth,water relations and photosynthetic capacity of maize (Zea mays L) plants. Environ. Sci. Pollut. Res. 23(18):18320-18331.
Crossref

 
 

Beekes M, Lasch P, Naumann D (2007). Analytical applications of Fourier transform-infrared (FT-IR) spectroscopy in microbiology and prion research. Vet. Microbiol. 123:305-319.
Crossref

 
 

Ben-Iwo J, Manovic V, Longhurst P (2016). Biomass resources and biofuels potential for the production of transportation fuels in Nigeria. Renew. Sustain. Energy Rev. 63:172-192.
Crossref

 
 

Born N, Behringer D, Liepelt S, Beyer S, Schwerdtfeger M, Ziegenhagen B, Koch M (2014). Monitoring plant drought stress response using terahertz time-domain spectroscopy. Plant Physiol. 164:1571-1577.
Crossref

 
 

Dean AP, Sigee DC, Estrada B, Pittman JK (2010). Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresour. Technol. 101:4499-4507.
Crossref

 
 

IPCC (2007) Climate Change 2007: The Physical Basis, Cambridge, UK.

 
 

Kamnev AA (2008). FTIR spectroscopic studies of bacterial cellular responses to environmental factors, plant-bacterial interactions and signalling. J. Spectrosc. 22(2-3):83-95.
Crossref

 
 

Kuhnen S, Ogliari JB, Dias PF, Boffo EF, Correia I, Ferreira AG, Delgadillo I, Maraschin M (2010). ATR-FTIR spectroscopy and chemometric analysis applied to discrimination of landrace maize flours produced in southern Brazil. Int. J. Food Sci. Technol. 45:1673-1681.
Crossref

 
 

Lahlali R, Jiang Y, Kumar S, Karunakaran C, Liu X, Borondics F, Hallin E, Bueckert R (2014). ATR – FTIR spectroscopy reveals involvement of lipids and proteins of intact pea pollen grains to heat stress tolerance. Front. Plant Sci. 5:747.
Crossref

 
 

Ogbaga CC, Stepien P, Dyson BC, Rattray NJ, Ellis DI, Goodacre R, Johnson GN (2016). Biochemical analyses of sorghum varieties reveal differential responses to drought. PloS One 11:e0154423.
Crossref

 
 

Ogbaga CC, Stepien P, Johnson GN (2014). Sorghum (Sorghum bicolor) varieties adopt strongly contrasting strategies in response to drought. Physiol. Plant. 152:389-401.
Crossref

 
 

Winder CL, Goodacre R (2004). Comparison of diffuse-reflectance absorbance and attenuated total reflectance FT-IR for the discrimination of bacteria. Analyst 129:1118-1122.
Crossref

 
 

Zhao J (2015). Phospholipase D and phosphatidic acid in plant defence response: from protein-protein and lipid-protein interactions to hormone signalling. J. Exp. Bot. 66 (7):1721-1736.
Crossref