African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12487

Full Length Research Paper

Characterization and in vitro studies on anticancer activity of exopolymer of Bacillus thuringiensis S13

K. Parthiban
  • K. Parthiban
  • Department of Microbiology, Hajee Karutha Rowther Howdia College (Autonomous) Uthamapalayam - 625533, Tamilnadu, India; Department of Animal science, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620024,Tamilnadu, India.
  • Google Scholar
V. Vignesh
  • V. Vignesh
  • Department of Animal science, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620024,Tamilnadu, India.
  • Google Scholar
R. Thirumurugan*
  • R. Thirumurugan*
  • Department of Animal science, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620024,Tamilnadu, India.
  • Google Scholar


  •  Received: 29 September 2013
  •  Accepted: 29 April 2014
  •  Published: 21 May 2014

References

Adriana AT, Bernadette P, Daniela I, Concetta G, Giuseppe B (2005). Antiviral and immunoregulatory effect of a novel exopolysaccharide from a marine thermotolerant Bacillus licheniformis. Int. Immuno-pharmacol. 6:8–13.
 
Al Nahas MO, Darwish MM, Ali AE, Amin MA (2011). Characterization of an exopolysaccharide producing marine bacterium isolate Pseudoalteromonas sp. Afr. J. Microbiol. Res. 5(22):3823-3831.
Crossref
 
Annarita P, Anzelmo G, Nicolaus B (2010). Bacterial exopolysac-charides from marine habitats Production, characterization and biological activities. Mar.Drugs. 8:1779-1802.
Crossref
 
Barsby T, Kelly MT, Gagne SM, Andersen RJ (2001). Bugorol A produced in culture by a marine Bacillus sp. reveals a novel template for cationic peptide antibiotics. Org. Lett, 3:437- 440.
Crossref
 
Bragadeeswaran S, Jeevapriya R, Prabhu K, Sophia RS, Priyadharsini S, Balasubramanian T (2011). Exopolysaccharide production by Bacillus cereus GU812900, a fouling marine bacterium. Afr. J. Microbiol. Res.5 (24):4124-4132.
Crossref
 
Braissant O, Decho AW, Dupraz C, Glunk K, Przekop M, Visscher PT(2007). Exopolymeric substances of sulfate-reducing bacteria Interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology, 1-11.
 
Bruckner J (1955). Estimation of monosaccharides by the orcinol–sulphuric acid reaction Biochem J. 60(2):200–205.
Pubmed
 
Castresana J (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 17(4):540-52.
Crossref
 
Cerning J, Renard CMCG, Thibault, JF, Bouillanne C, Landon M, Desmazeaud M, Topisirovic L (1994). Carbon source requirements for exopolysaccharide production by Lactobacillus casei CG11 and partial structure analysis of the polymer. Appl. Environ. Microbiol. 60:3914–3919.
Pubmed
 
Chen W, Zhao Z, Chen SF, Li YQ (2008).Optimization for the pro-duction of exopolysaccharide from Fomes formentarius in submerge culture and its antitumor effect in vitro. Bioresour. Technol. 99:3187–3194.
Crossref
 
Daffodil ED, Uthayakumari FK, Mohan VR (2012). GC-MS determi-nation of bioactive compounds of curculigo orchioides gaertn. Science Research Reporter 2(3):198-201.
 
Danesi R, DeBraud F, Fogli S, De Pas TM, Di Paolo A, Curigliano G, Del Tacca M (2003). Pharmacogenetics of anticancer drug sensitivity in non-small cell lung cancer. Pharmacol. Rev. 55: 57-103.
Crossref
 
Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res.1:36.
 
Donlan RM, Costerton JW (2002). Biofilms;survival mechanisms of clinically relevant microorganisms. Clin.Microbiol.Rev. 15:167-193.
Crossref
 
Gancel F, Novel G (1994). Exopolysaccharide production by Streptococcus salivarius ssp. thermophilus cultures: 1. Conditions of production. J. Dairy Sci. 77:685–688.
Crossref
 
Hayashida Soiza G, Uchida A, Mori N, Kuwahara Y, Ishida Y (2008). Purification and characterization of antibacterial substances produced by a marine bacterium Pseudoalteromonas haloplanktis strain. J. Appl. Microbiol. 105:1672–1677.
Crossref
 
Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994). Bergey's Manual of Determinative Bacteriology, ninth ed., Williamsons and Wilkins, Balitomore. 2:559-560.
 
Inmaculada LI, Mata JA, Tallon R, Bressollier P, Urdaci MC, Quesada E, Bejar V (2010). Characterization of the Exopolysaccharide Produced by Salipiger mucosus A3T, a Halophilic Species Belonging to the Alphaproteobacteria, Isolated on the Spanish Mediterranean Seaboard. Mar. Drugs.8(8):2240–2251.
Crossref
 
Isnanetyo A, Kamei Y (2003). MC21-A, a bactericidal antibiotic produ-ced by a new marine bacterium,Pseudoalteromonas phenolica sp. nov. O-BC30T against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 47:480-488.
Crossref
 
Jean-Marc N, Yves VP, Lydia H, Rupert de W (1990). Compilation of small ribosomal subunit RNA sequences Nucl. Acids Res.18:2237-2317.
Crossref
 
Jensen PR, Fenical W (1994). Strategies for the discovery of secondary metabolites from marine bacteria.Ecological perspectives. Annu. Rev. Microbiol.48:559-584.
Crossref
 
Khuri FR, Herbst RS, Fossells FV (2001). Emerging therapies in non-small-cell lung cancer. Ann Oncol .12:739-44.
Crossref
 
Kim MJ, Seo HN, Hwang TS, Lee SH, Park DH (2008). Characterization of exopolysaccharide (EPS) produced by Weissella hellenica Skkimchi isolated from kimchi. J. Microbiol. 46(5):535-541.
Crossref
 
Lijour Y, Gentric E, Deslandes E, Guezennec J (1994). Estimation of the sulfate content of hydrothermal vent bacterial polysaccharides by fourier transform infrared spectroscopy.Anal. Biochem. 220: 244–248.
Crossref
 
Lowell FM (1966). The structure of a bromine rich antibiotic. J. Amer. Chem. Soc. 88: 4510-4511.
Crossref
 
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275.
Pubmed
 
Lungmann P, Choorit W, Prasertsan P (2007). Physio-chemical and biological properties of partially purified exopolymers from newly isolated halophilic bacterial strain SM5 Songklanakarin J. Sci. Technol. 29(6): 1571-1582.
 
Mancuso Nichols CA, Garon S, Bowman JP, Raguenes G, Guézennec J (2004). Production of exopolysaccharides by Antarctic marine bacterial isolates. J Appl Microbiol. 96(5):1057-66.
Crossref
 
Mata JA, Bejar V, Bressollier P, Tallon R, Urdaci MC, Quesada E, Inmaculada Llamas I (2008). Characterization of exopolysaccharides produced by three moderately halophilic bacteria belonging to the family Alteromonadaceae. J. Appl. Microbiol. 105:521–528.
Crossref
 
Ng TK, Hu WS (1989). Adherenceof emulsanproducing Acinetobacter calcoaceticus to hydrophobic liquids. Appl. Microbiol. biotechnol. 31:480-485.
Crossref
 
Read RR, Costerton JW (1987). Purification and characterization of adhesive exopolysaccharides from Pseudomonas putida and Pseudomonas fluorescens. Can. J. Microbiol. 33:1080-1090.
Crossref
 
Reichenbach H (2001). Myxobacteria producers of novel bioactive substances. J. Ind. Microbiol. Biotechnol. 27:149-156.
Crossref
 
Roehm NW, Rodgers GH, Hatfield SM, Glasebrook AL (1991). An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J. Immunol. Methods 142:257-65.
Crossref
 
Russell NJ (1989). Adaptive modifications in membranes of halotolerant and halophilic microorganisms. J. Bioenerg. Biomembr. 21:93–113.
Crossref
 
Sathiyanarayanan G, Seghal Kiran G, Joseph Selvin (2013). Synthesis of silver nanoparticles by polysaccharide bioflocculant produced from marine Bacillus subtilis MSBN17, Colloids Surf: B 102:13– 20.
Crossref
 
Stevens MG, Olsen SC (1993). Comparative analysis of using MTT and XTT in colorimetric assays for quantitating bovine neutrophil bactericidal activity. J. Immunol. Methods. 157:225-31.
Crossref
 
Sung HK, Hyun SL, Shin HP, Hong KL (2000). Optimal Conditions for the Production of Exopolysaccharide by Marine Microorganism Hahella chejuensis. Biotechnol. Bioprocess Eng.5:181-185.
Crossref
 
Sutherland IW (1977). Microbial exopolysaccharide synthesis. In Extracellular Microbial Polysaccharides, Sanford P A and A Laskin,Am. Chem. Soc pp: 40–57.
Crossref
 
Vijayabaskar P, Babinastarlin S, Shankar T, Sivakumar T, Anandapandian KTK (2011). Quantification and Characterization of Exopolysaccharides from Bacillus subtilis (MTCC 121). Adv. Biol. Res. 5(2):71-76.
 
Vincent P, Pignet P, Talmont F, Boui L, Foumet B, Guezennec J, Jeanthon C, Prieur D (1994). Production and characterization of an exopolysaccharide excreted by a deep-sea hydrothermal vent bacterium isolated from polycheate annelid Alvinella pompejana. Appl. Environ. Microbiol. 60:4134-4141.
Pubmed
 
Weber FJ, DeBont JAM (1996). Adaptation mechanisms of microorga-nisms to the toxic effects of organic solvents on membranes. Biochem. Biophys. Acta Rev. Biomembr. 1286:225–245.
Crossref
 
West TP, Strohfus B (1998). Effect of complex nitrogen sources upon gellan production by Sphingomonas paucimobilis. Microbios 94:145-152.
 
Yano Y, Nakayama A, Yoshida K (1997). Distribution of polyunsaturated fatty acids in bacteria present in intestines of deep-sea fish and shallow-sea poikilothermic animals. Appl. Environ. Microbiol. 63:2572–2577.
Pubmed