African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12487

Review

Biosynthesis of silver nanoparticles by endophytic fungi: Its mechanism, characterization techniques and antimicrobial potential

Sardul Singh Sandhu
  • Sardul Singh Sandhu
  • Department of Biological Sciences, R. D. University, Jabalpur, M.P., India.
  • Google Scholar
Harshita Shukla
  • Harshita Shukla
  • Department of Biological Sciences, R. D. University, Jabalpur, M.P., India.
  • Google Scholar
Shyamji Shukla
  • Shyamji Shukla
  • Department of Biotechnology, Mata Gujri Mahila Mahavidyalaya (Autonomous), Jabalpur, M.P., India.
  • Google Scholar


  •  Received: 05 January 2017
  •  Accepted: 13 March 2017
  •  Published: 05 April 2017

References

Abeer RM, Aziz AE, Monira R, Alothmana AL, Saleh AE, Mohamed A, Mahmoud M, Majrashic M (2013). Green synthesis of silver nanoparticles using Aspergillus terreus (KC462061). Dig. J. Nanomat. Biostruct. 8:1215-1225.

 

Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B Biointerfaces 28:313-318.
Crossref

 
 

Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E, Scheddin D, Domann E, Schnettler R (2004a). Nanoparticulate silver: A new antimicrobial substance for bone cement. Orthopade 33:885-892.

 
 

Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E, Domann E, Schnettler R (2004b). An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25:4383-4391.
Crossref

 
 

Amulyavichus A, Daugvila A, Davidonis R, Sipavichus C (1998). Study of chemical composition of nanostructural materials prepared by laser cutting of metals. Fizika Met. Met. 85:111-117.

 
 

Azevedo JL, Maccheroni W, Pereira JO, Araujo WL (2000). Endophytic microorganism a review on insect control and recent advances on tropical plants. Electron. J. Biotechnol. 3:1-36.
Crossref

 
 

Bala M, Arya V (2013). Biological synthesis of silver nanoparticles from aqueous extract of endophytic fungus Aspergillus fumigates and its antibacterial action. Int. J. Nanomat. Biostruct. 3:37-41.

 
 

Bandara WMMS, Seneviratne G, Kulasooriya SA (2006). Interactions among endophytic bacteria and fungi: Effects and potentials. J. Biosci. 31(5):645-650.
Crossref

 
 

Barreiro E, Casas JS, Couce MD (2007). Synthesis and antimicrobial activities of silver (I) sulfanylcarboxylates: Structural isomers with identically or unequally coordinated Ag centers in an Ag4S4 ring. Dalton Trans. 28:3074-3085.
Crossref

 
 

Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A (2008). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater. Res. 43:1164-1170.
Crossref

 
 

Bhainsa KC, D'Souza SF (2006). Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf. 47:160-164.
Crossref

 
 

Bharathidasan R, Panneerselvam A (2012). Biosynthesis and characterization of silver nanoparticles using endophytic fungi Aspergillus concius, Penicillium janthinellum and Phomosis sp. Int. J. Pharm. Sci. Res. 3:3163-3169.

 
 

Bhattacharya R, Mukherjee P (2008). Biological properties of "naked" metal nanoparticles. Adv. Drug Deliv. Rev. 60:1289-1306.
Crossref

 
 

Bhol KC, Schechter PJ (2007). Effects of nanocrystalline silver (NPI 32101) in a rat model of ulcerative colitis. Dig. Dis. Sci. 52:2732-2742.
Crossref

 
 

Bischoff JF, White JF (2005). Evolutionary development of the Clavicipitaceae. In. The Fungal Community, Its Organisation and Role in the Ecosystem (eds. J. Dighton, J.F. White, and P. Oudemans, Jr.), CRC Taylor & Francis, Inc. USA. pp. 505-518.

 
 

Boisselier E, Astruc D (2009). Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 38:1759-82.
Crossref

 
 

Burrell RE, McIntosh CL, Morris LR (1995). Process of activating anti-microbial materials. US Patent 5454886. 3.

 
 

Chandrasekharan N, Kamat PV (2000). Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles. J. Phys. Chem. B. 104:10851-10857.
Crossref

 
 

Chen X, Schluesener HJ (2008). Nanosilver: A nanoproduct in medical application. Toxicol. Lett. 176:1-12.
Crossref

 
 

Cohen MS, Stern JM, Vanni AJ, Kelley RS, Baumgart E, Field D, Libertino JA, Summerhayes IC (2007). In vitro analysis of a nanocrystalline silver-coated surgical mesh. Surg. Infect. 8:397-403.
Crossref

 
 

Davis EC, Shaw A (2008). Biogeographic and phylogenetic patterns in diversity of liverwort-associated endophytes. Am. J. Bot. 95:914-924.
Crossref

 
 

Devi LS, Bareh DA, Joshi SR (2014). Studies on Biosynthesis of Antimicrobial Silver Nanoparticles Using endophytic Fungi isolated from the Ethno-medicinal Plant Gloriosa superba L. Proc. Nat. Acad. Sci. India. 84.
Crossref

 
 

Devi LS, Joshi SR (2014). Evaluation of antimicrobial potency of silver nanoparticles biosynthesized by using endophytic fungus Cryptosporiopsis ericae PS4. J. Microbiol. 52: 667-674.
Crossref

 
 

Devi LS, Joshi SR (2015). Ultrastructures of silver nanoparticles biosynthesized using endophytic fungi. J. Micro. Ultrastruc. 3: 29-37.
Crossref

 
 

Devi NN, Dheeban Shankar P, Sutha S (2012). Biomimetic synthesis of silver nanoparticles from an endophytic fungus and their antimicrobial efficacy. Int. J. Biomed. Adv. Res. 3:409-415.

 
 

Devi P, Niveditha R, Vaishnavie R (2015). Antimicrobial activity of silver nanoparticles synthesized by endophytic Aspergillus sp. isolated from Justicia beddomei. J. Chem. Pharma Res. 7:784-788.

 
 

Dias MA, Lacerda ICA, Pimentel PF, Castro D, Rosa HF (2002). Removal of heavy metals by an Aspergillus terreus strain immobilized in a polyurethane matrix. Lett. Appl. Microbiol. 34:46-50.
Crossref

 
 

Faeth SH, Gardner DR, Hayes CJ, Jani A, Writtlinger SK, Jones TA (2006). Temporal and spatial variation in alkaloid levels in Achnatherum robustum, a native grass infected with the endophyte Neotyphodium. J. Chem. Ecol. 32:307-324.
Crossref

 
 

Fong J, Wood F (2006). Nanocrystalline silver dressings in wound management: a review. Int. J. Nanomed. 1:441-449.
Crossref

 
 

Fung MC, Bowen DL (1996). Silver products for medical indications: risk-benefit assessment. J. Toxicol. Clin. Toxicol. 34:119-126.
Crossref

 
 

Galiano K, Pleifer C, Engelhardt K, Brossner G, Lackner P, Huck C, Lass-Flörl C, Obwegeser A (2008). Silver segregation and bacterial growth of intraventricular catheters impregnated with silver nanoparticles in cerebrospinal fluid drainages. Neurol. Res. 30:285-287.
Crossref

 
 

Gao S, Zhao Y, Gou P, Chen N, Xie Y (2003). Preparation of CuAlO2 nanocrystalline transparent thin films with high conductivity. Nanotechnology 14:538-541.
Crossref

 
 

Gericke M, Pinches A (2006a). Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132-140.
Crossref

 
 

Gravante G, Caruso R, Sorge R (2009). Nanocrystalline silver: a systematic review of randomized trials conducted on burned patients and an evidence based assessment of potential advantages over old silver formulations. Ann. Plast. Surg. 63:201-205.
Crossref

 
 

Guo B, Jin-Rui D, Siewbe Ng, Huang Y, Leong C, Ong W, Carte BK (2000). Cytonic acids A and B: Novel tripepside inhibitors of hCMV protease from the endophytic fungus Cytonema sp. J. Nat. Prod. 63(5):602-604.
Crossref

 
 

Hirst SM, Karakoti AS, Tyler RD, Sriranganathan N, Seal S, Reilly CM (2009). Anti-inflammatory properties of cerium oxide nanoparticles. Small 5:2848-2856.
Crossref

Huang YF, Chang HT, Tan WH (2008). Cancer Cell Targeting Using Multiple Aptamers Conjugated on Nanorods. Anal. Chem. 80:567-572.
Crossref

 

Hullikere MM, Joshi CG, Raju NG (2014). Biogenic synthesis of silver nano particles using endophytic fungi Penicillium nodositatum and its antibacterial activity. J. Chem. Pharm. Res. 6:112-117.

 
 

Ito M, Yang Z, Andl T (2007). Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447:316-320.
Crossref

 
 

Kalimuthu K, Babu SR, Venkataraman D, Bilal M, Gurunathan S (2008). Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf. B Biointerfaces 65:150-153.
Crossref

 
 

Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G (2008). Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater. Lett. 62:4411-4413.
Crossref

 
 

Kharwar RN, Verma VC, Strobel GA, Ezra D (2008). The endophytic fungal complex of Catharanthus roseus (L.) G. Don. Curr. Sci. 95:228-232.

 
 

Kim JS, Kuk E, Yu KN (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95-101.
Crossref

 
 

Kirsner R, Orsted H, Wright B (2001). Matrix metalloproteinases in normal and impaired wound healing: a potential role of nanocrystalline silver. Wounds 13:5-10.

 
 

Klasen HJ (2000). A historical review of the use of silver in the treatment of burns II. Renewed interest for silver. Burns 26:131-138.
Crossref

 
 

Klaus T, Joerger R, Olsson E, Granqvist CG (1999). Silver based crystalline nanoparticles, microbially fabricated. Proc. Nat. Acad. Sci. 968:13611-13614.
Crossref

 
 

Kleemann W (1993). Random-field induced antiferromagnetic, ferroelectric and structural domain states. Int. J. Mod. Phys. 7:2469-2507.
Crossref

 
 

Koulman A, Lane GA, Christensen MJ, Fraser K, Tapper BA (2007). Peramine and other fungal alkaloids are exuded in the guttation fluid of endophyte-infected grasses. Phytochemistry 68:355-360.
Crossref

 
 

Krings M, Taylor TN, Hass H, Kerp H, Dotzler N, Herman EJ (2007). Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host response. New Phytol. 174:648-657.
Crossref

 
 

Krolikowska A, Kudelski A, Michota A, Bukowska J (2003). SERS studies on the structure of thioglycolic acid monolayers on silver and gold. Surf. Sci. 532:227-232.
Crossref

 
 

Kumar A, Mandal S, Selvakannan PR, Parischa R, Mandale AB, Sastry M (2003). Investigation into the interaction between surface-bound alkylamines and gold nanoparticles. Langmuir 19:6277-6282.
Crossref

 
 

Leaper DJ (2006). Silver dressings: their role in wound management. Int. Wound J. 3:282-294.
Crossref

 
 

Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu XHN (2007). In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebra fish embryos. ACS Nano 1:133-143.
Crossref

 
 

Liu X, Lee PY, Ho CM, Lui VC, Chen Y, Che CM, Tam PK, Wong KK (2010). Silver nanoparticles mediate differential responses in keratinocytes and fibroblasts during skin wound healing. Chem. Med. Chem. 5:468-475.
Crossref

 
 

Lok CN, Ho CM, Chen R (2007). Silver nanoparticles: partial oxidation and antibacterial activities. J. Biol. Inorg. Chem.12:527-534.
Crossref

 
 

Luo J, Maye MM, Kariuki NN, Wang L, Njoki P, Lin Y, Schadt M, Naslund HR, Zhong CJ (2005). Electrocatalytic oxidation of methanol: carbon supported gold-platinum nanoparticles catalysts prepared by two-phase protocol. Catal. Today 99:291-297.
Crossref

 
 

Madhumathi K, Sudheesh Kumar PT, Abhilash S, Sreeja V, Tamura H (2010). Development of novel chitin nanosilver composite scaffolds for wound dressing applications. J. Mater. Sci. Mater. Med. 21:7-13.
Crossref

 
 

Maheshwari R (2006). What is an endophytic fungus. Curr. Sci. 90(10):1309.

 
 

Matsumura Y, Yoshikata K, Kunisaki S I, Tsuchido T (2003). Mode of Bactericidal Action of Silver Zeolite and its Comparison with That of Silver Nitrate. Appl. Environ. Microbiol. 69:4278-4281.
Crossref

 
 

Mehra RK, Winge DR (1991). Metal Ion Resistance in Fungi: Molecular Mechanisms and their Regulated Expression. J. Cell. Biochem. 45:30-40.
Crossref

 
 

Mermel LA (2000). Prevention of intravascular catheter-related infections. Ann. Intern. Med. 132:391-402.
Crossref

 
 

Monteiro DR, Gorup LF, Takamiya AS (2009). The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int. J. Antimicrob. Agents 34:103-110.
Crossref

 
 

Muangman P, Muangman S, Opasanon S, Keorochana K, Chuntrasakul C (2009). Benefit of hydrocolloid SSD dressing in the outpatient management of partial thickness burns. J. Med. Assoc. Thailand 92:1300-1305.

 
 

Musarrat J, Dwivedi S, Singh BR, Al-Khedhairy AA, Azam A, Naqvi A (2010).Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresour. Technol. 101:8772-8776.
Crossref

 
 

Nadworny PL, Wang JF, Tredget EE (2008). Anti-inflammatory activity of nanocrystalline silver in a porcine contact dermatitis model. Nanomed. Nanotechnol. Biol. Med. 4:241-251.
Crossref

 
 

Nair B, Pradeep T (2002). Coalescence of Nanoclusters and Formation of Submicron Crystallites Assisted by Lacto-bacillus Strains. Cryst. Growth Des. 2:293-298.
Crossref

 
 

Netala VR, Bobbu P, Ghosh SB, Tartte V (2015). Endophytic fungal assisted synthesis of Silver Nanoparticles, Characterization and Antimicrobial Activity. Asian J. Pharm. Clin. Res. 8:113-116.

 
 

Patel PP (2008). Turning waste heat into power: Research shows that silicon is as efficient as pricier materials. Technol. Rev. pp.1-2.

 
 

Peterson MSM, Bouwman J, Chen A, Deutsch M (2007). Inorganic metallodielectric materials fabricated using two single-step methods based on the Tollen's process. J. Colloid Interface Sci. 306:41-49.
Crossref

 
 

Petrini O (1986). Taxonomy of endophytic fungi of aerial plant tissues. In. N.J. Fokkema and J. van den Heuvel (eds.) Microbiology of the Phyllosphere. Cambridge University, Cambridge. pp. 175-187.

 
 

Petrini O (1991). Fungal endophytes of tree leaves. In. Andrews J., Hirano S., editors. Microbial ecology of leaves. New York. pp. 179-197.
Crossref

 
 

Prabhu S, Poulose EK (2012). Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2(1):32.
Crossref

 
 

Qian Y, Yu H, He D, Yang H, Wang W, Wan X, Wang L (2013). Biosynthesis of silver nanoparticles by the endophytic fungus Epicoccum nigrum and their activity against pathogenic fungi. Bioproc. Biosys. Eng. 36:1613-9.
Crossref

 
 

Raheman F, Deshmukh S, Ingle A, Gade A, Rai M (2011). Silver Nanoparticles: Novel Antimicrobial Agent Synthesized from an Endophytic Fungus Pestalotia sp. Isolated from Leaves of Syzygium cumini (L). Nano Biomed. Eng. 3:174-178.
Crossref

 
 

Rahi DK, Parmar AS (2014). Mycosynthesis of silver nanoparticles by an endophytic Penicillium species of Aloe vera root, evaluation of their antibacterial and antibiotic enhancing activity. Int. J. Nanomat. Biostruct. 4:46-51.

 
 

Rai M, Yadav A, Gade A (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27(1):76-83.
Crossref

 
 

Rathna GS, Elavarasi A, Peninal S, Subramanian J, Mano G, Kalaiselvam M (2013). Extracellular Biosynthesis of Silver Nanoparticles by Endophytic Fungus Aspergillus terreus and its Anti-dermatophytic Activity. Int. J. Pharm. Biol. Arch. 4:481-487.

 
 

Ricco JB (2006). InterGard silver bifurcated graft: features and results of a multicenter clinical study. J. Vasc. Surg. 44:39-46.
Crossref

 
 

Rodriguez RJ, Henson J, Van E, Volkenburgh M, Hoy L, Wright F, Beckwith Y, Kim RS Redman (2008). Stress tolerance in plants via habitat-adapted symbiosis. Int. Soc. Microbiol. Ecol. 2:404-416.
Crossref

 
 

Saifuddin N, Wong CW, Nur Yasumira AA (2009). Rapid Biosynthesis of Silver Nanoparticles Using Culture Supernatant of Bacteria with Microwave Irradiation. E-J. Chem. 6:61-70.
Crossref

 
 

San Chan Y, Don MM (2012). Charactrization of silver nanoparticles produced by white rot fungi and it in vitro antimicrobial activities. Int. Arabic J. Antimicrob. Agents 2:1-8.

 
 

Sanghi R, Verma P (2009). Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour. Technol. 100:501-504.
Crossref

 
 

Shafirovich E, Diakov V, Varma A (2006). Combustion of novel chemical mixtures of hydrogen generation. Combust. Flame 144:415-418.
Crossref

 
 

Shanmukh S, Jones L, Zhao YP, Driskell JD, Tripp RA, Dluhy RA (2008). Identification and classification of respiratory syncytial virus (RSV) strains by surface-enhanced Raman spectroscopy and multivariate statistical techniques. Anal. Bioanal. Chem. 390:1551-1555.
Crossref

 
 

Shao K, Yao J (2006). Preparation of silver nanoparticles via a non-template method. Mater. Lett. 60:3826-3829.
Crossref

 
 

Sharma S, Kumar S, Bulchandani BD, Taneja S, Banyal S (2013). Green Synthesis of Silver Nanoparticles and their antimicrobial activity against Gram positive and Gram Negative Bacteria. Int. J. Biotechnol. Bioeng. Res. 7: 711-714.

 
 

Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007). Characterization of enhanced antibacterial effects of novel silver nanoparticle by using some Endophytic Fungi with special reference to their Antimicrobial Potential. Int. J. Nanotechnol. Appl. 7:7-22.

 
 

Sibbald RJ, Contreras-Ruiz J, Coutts P, Fierheller M, Rothman A, Woo K (2007). Bacteriology, inflammation, and healing: a study of nanocrystalline silver dressings in chronic venous leg ulcers. Adv. Skin Wound Care 20:549-558.
Crossref

 
 

Singh AK, Rathod V, Singh D, Ninganagouda S, Kulkarni P, Mathew J, Haq M (2015). Bioactive Silver Nanoparticles from Endophytic fungus Fusarium sp. Isolated from an Ethno medicinal Plant Withania somnifera (Ashwagandha) and its Antibacterial Activity. Int. J. Nanomat. Biostruc. 5: 15-19.

 
 

Singh D, Rathod V, Ninganagouda S, Hiremath J, Singh AK, Mathew J (2014). Optimization and Characterization of Silver Nanoparticle by Endophytic Fungi Penicillium sp. isolated from Curcuma longa (Turmeric) and Application Studies against MDR E. coli and S. aureus. Bioinorg. Chem. Appl. 2014:1-8.
Crossref

 
 

Singh D, Rathod V, Ninganagouda S, Hiremath J, Singh AK, Mathew J (2013). Biosynthesis of silver nanoparticle by endophytic fungi Pencillium sp. isolated from Curcuma longa (turmeric) and its antibacterial activity against pathogenic gram negative bacteria. J. Pharm. Res. 7:448-453.
Crossref

 
 

Sondi I, Sondi B (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 275:177-182.
Crossref

 
 

Song HY, Ko KK, Oh LH, Lee BT (2006). Fabrication of Silver Nanoparticles and their Antimicrobial Mechanisms. Eur. Cell. Mat. 11(Suppl 1):58.

 
 

Stone JK, Polishook JD, White JR (2004). Endophytic fungi, In. Biodiversity of fungi, Inventory and Monitoring Methods, Eds. Mueller GM, Bills GF, Foster MS, Elsevier Academic Press: Burlington. MA, USA. Pp. 241-270.
Crossref

 
 

Strobel G, Daisy B (2003). Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev. 67:491-502.
Crossref

 
 

Strobel GA, Ford E, Worapong J, Harper JK, Arif AM, Grant DM, Fung PCW, Chan K (2002). Isopestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry 60:179-183.
Crossref

 
 

Su Y, Qiao S, Yang H, Yang C, Jin Y, Stahr F, Sheng J, Cheng L, Ling C, Lu GQ (2010). Titanate-Silica mesostructured nanocables: synthesis, structure analysis and biomedical applications. Nanotechnology 21(6):065604.
Crossref

 
 

Sun RW, Chen R, Chung NP, Ho CM, Lin CL, Che CL (2005). Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chem. Commun. 40:5059-5061.
Crossref

 
 

Sun X, Luo Y (2005). Preparation and size control of silver nanoparticles by a thermal method. Mater. Lett. 59:3847-3850.
Crossref

 
 

Sunkar S, Nachiyar CV (2012). Microbial synthesis and characterization of silver nanoparticles by using endophytic bacterium Bacillus cereus: A novel source in benign synthesis. Glob. J. Med. Res. 2(12):953-959.

 
 

Sunkar S, Nachiyar CV (2013). Endophytic fungi mediated extracellular silver nanoparticles as effective antibacterial agents. Int. J. Pharm. Pharm. Sci. 5:95-100.

 
 

Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL (2007). Synthesis of tetra hexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316:732-735.
Crossref

 
 

Tredget EE, Shankowsky HA, Groeneveld A, Burnell R (1998). A matched-pair, randomized study evaluating the efficacy and safety of Acticoat silver-coated dressing for the treatment of burn wounds. J. Burn Care Rehabil. 19:531-537.
Crossref

 
 

Tsuji T, Iryo KN, Watanabe Tsuji M (2002). Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size. Appl. Surf. Sci. 202:80-85.
Crossref

 
 

Vardhana J, Kathiravan G (2015). Biosynthesis of Silver Nanoparticles by Endophytic Fungi Pestaloptiopsis pauciseta Isolated From the Leaves of Psidium guajava Linn. Int. J. Pharm. Sci. Rev. Res. 31:29-31.

 
 

Verma VC, Gond SK, Kumara A, Kharwar RN, Strobel GA (2007). Microbial Ecology, The endophytic mycoflora of bark, leaf, and stem tissues of Azadirachta indica A. Juss (Neem) from Varanasi (India). Microb. Ecol. 54:119-125.
Crossref

 
 

Verma VC, Kharwar RN, Strobel GA (2009). Chemical and Functional Diversity of Natural Products from Plant Associated Endophytic Fungi. Nat. Prod. Comm. 4:1-22.

 
 

Verma VC, Kharwar RN, Gange AC (2010). Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5:33-40.
Crossref

 
 

Wilson D (2000). Ecology of woody plant endophytes In microbial Endophytes (eds. C.W. Bacon and J.F. White, Jr), Marcel Dekker, Inc: New York: 389-420.

 
 

Wong KK, Cheung SO, Huang LM, Niu J, Tao C, Ho CM, Che CM, Tam PK (2009). Further evidence of the anti-inflammatory effects of silver nanoparticles. Chem. Med. Chem. 4:1129-1135.
Crossref

 
 

Yen HJ, Hsu SH, Tsai CL (2009). Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small 5:1553-1561.
Crossref

Zhang HW, Song CY, Tan RX (2006). Biology and chemistry of endophytes. Nat. Prod. Rep. 23:753-771.
Crossref

 

Zhou W, Ma YY, Yang HA, Ding Y, Luo XG (2011). A label-free biosensor based on silver nanoparticles array for clinical detection of serum p53 in head and neck squamous cell carcinoma. Int. J. Nanomed. 6:381-386.
Crossref

 
 

Zong RL, Zhou J, Li B, Fu M, Shi SK, Li LT (2005). Optical properties of transparent copper nanorod and nanowire arrays embedded in anodic alumina oxide. J. Chem. Phys. 123(9):94710.
Crossref