African Journal of
Environmental Science and Technology

  • Abbreviation: Afr. J. Environ. Sci. Technol.
  • Language: English
  • ISSN: 1996-0786
  • DOI: 10.5897/AJEST
  • Start Year: 2007
  • Published Articles: 1129

Full Length Research Paper

The effects of arbuscular mycorrhizal fungi and phosphorus levels on dry matter production and root traits in cucumber (Cucumis sativus L.)

Yagoob Habibzadeh
  • Yagoob Habibzadeh
  • Agricultural research center of west Azarbaijan province, Post cod: 57169-64455 Urmia, Iran.
  • Google Scholar


  •  Received: 03 March 2014
  •  Accepted: 21 January 2015
  •  Published: 08 February 2015

References

Al-Karaki GN, McMichael B, Zak J (2004). Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14:263-269.
Crossref
 
Allen MF, Smith WK, Moore TS, Christensen M (1981). Comparative water relations and photosynthesis of mycorrhizal and non-mycorrhizal Bouteloua gracilis H.B.K. Lag ex Steud. New Phytol. 88:683-693.
Crossref
 
Balakrishnan N, Subramanian KS (2012). Mycorrhizal symbiosis and bioavailability of micronutrients in maize grain. Maydica 57:129-138.
 
Burleigh SH, Cavagnaro T, Jakobsen I (2002). Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition. J. Exp. Bot. 53:1593-1601.
Crossref
 
Demir S (2004). Influence of arbuscular mycorrhiza on some physiological, growth parameters of pepper. Turkish J. Biol. 28:85-90.
 
Giovannetti M, Mosse B (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 84:489-500.
Crossref
 
Graca MAS, Barlocher F, Gessner MO (2005). Methods to study litter decomposition: A practical guide. Springer-Verlag, Dordrecht, the Netherlands. 329 p.
Crossref
 
Graham JH (2000). Assessing cost of arbuscular mycorrhizal symbiosis in agroecosystems. In: Podila GK, Douds DD eds. Current Advances in Mycorrhizae Research pp. 127-140. APS Press, St Paul.
 
Grant C, Bittman S, Montrea M, Plenchette C, Morel C (2005). Soil and fertilizer phosphorus: Effects on plant P supply and mycorrhizal development. Canadian J. Plant Sci. 85:3-14.
Crossref
 
Hao ZP, Christie P, Qin L, Wang CX, Li XL (2005). Control of fusarium wilt of cucumber seedlings by inoculation with an arbuscular mycorrhical fungus. J. Plant Nut. 28:1961-1974.
Crossref
 
Hayman DS (1983). The physiology of vesicular-arbuscular endomycorrhizal symbiosis. Canadian J. Bot. 61:944-963.
Crossref
 
Huang RS, Smith WK, Yost RS (1985). Influence of vesicular-arbuscular mycorrhiza on growth, water relations, and leaf orientation in Leucaena leucocephala Lam. De Wit. New Phytol. 99:229-243
Crossref
 
Jennings DH (1995). The Physiology of Fungal Nutrition. Cambridge: Cambridge University Press.
Crossref
 
Kiers ET, Adler LS, Grman EL, Heijden MGA (2010). Manipulating the jasmonate response: How do methyl jasmonate additions mediate characteristics of aboveground and below-ground mutualisms? Func. Ecol. 24:434-443.
Crossref
 
Marulanda A, Porcel R, Barea M, Azcon R (2007). Drought tolerance and antioxidant activities in laventies in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus species. Mic. Ecol. 54:543-552.
Crossref
 
Marschner H (1996). Mineral Nutrition of Higher Plants. London: Academic Press.
 
Marschner H, Dell B (1994). Nutrient uptake in mycorrhizal symbiosis. Plant and Soil 159:89-102.
 
Miller JC, Jr, Rajapakse S, Garber RK (1986). Vesicular-arbuscular mycorrhizae in vegetable crops. Horti. Sci. 2l:974-984.
 
Mollier A., Pellerin S (1999). Maize root system growth and development as influenced by phosphorus deficiency. J. Exp. Bot. 50:487-497.
Crossref
 
Ocampo JA, Azcon R (1985). Relationship between the concentration of sugars in the roots and VA mycorrhizal infection. Plant and Soil 86:95-100.
Crossref
 
Parewa HP, Rakshit A, Rao AM, Sarkar NC, Raha P (2010). Evaluation of maize cultivars for phosphorus use efficiency in an Inceptisol. Int. J. Agri. Environ. Biotech. 3:195-198.
 
Pelletier S, Dionne J (2004). Inoculation rate of Arbuscular Mycorrhizal Fungi Glomus intraradices and Glomus etunicatum affects establishment of landscape Turf with no irrigation or fertilizer inputs. Crop Sci. 44:335-338.
 
Phillips JM, Hayman DS (1970). Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapidassessment of infection. Trans. British Mycol. Soci. 55:158-161.
Crossref
 
Plenets D, Mollier A, Pellerin SI (2000). Growth analysis of maize field crops under phosphorus deficiency. II. Radiation use efficiency, biomass accumulation and yield components. Plant and Soil 224:259-272.
Crossref
 
Podila GK, Douds DD (2001). Current Advances in Mycorrhizae Research. APS Press, St. Paul.
 
Temperini O, Rouphael Y, Parrano L, Biagiola E, Colla G, Mariotti R, Rea E, Rivera CM (2009). Nursery inoculation of pepper with arbuscular mycorrhizal fungi: An effective tool to enhance transplant performance. Acta Horti. 807:591-596.
 
Rakshit A, Bhadoria PBS, Das DK (2002). An overview of mycorrhizal symbioses. J. Interacademicia 6:570-581.
 
Rouphael Y, Cardarelli M, Mattia ED, Tulli M, Rea E, Colla G (2010). Enhancement of alkalinity tolerance in two cucumber genotypes inoculated with an arbuscular mycorrhizal biofertilizer containing Glomus intraradices. Biol. Fertil. Soils 46:499-509.
Crossref
 
Ryan MH, Herwaarden AF, Angus JF, Kirkegaard JA (2005). Reduced growth of autumn-sown wheat in a low-P soil is associated with high colonisation by arbuscular mycorrhizal fungi. Plant and Soil 270:275-286.
Crossref
 
Sanchez-Blanco MJ, Ferrandez T, Morales MA, Morte A, Alarcon JJ (2004). Variations in water status, gas exchange, and growth in Rosmarinus officinalis plants infected with Glomusdeserticola under drought conditions. J. Plant Physiol. 161:675-682.
Crossref
 
Smith SE, Smith FA (2011). Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular toecosystem scales. Ann. Rev. Plant Biol. 62:227-250.
Crossref
 
Subramanian KS, Tenshia V, Jayalakshmi K (2009). Biochemical changes and zinc fractions in arbuscular mycorrhizal fungus (Glomus intraradices) inoculated and uninoculated soils under differential zinc fertilization. Appl. Soil Ecol. 43:32-39.
Crossref
 
Subramanian KS, Santhanakrishnan P, Balasubramanian P (2006). Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Sci. Horti. 107:245-253.
Crossref
 
Trimble MR, Knowles NR (1995). Influence of vesicular–arbuscular mycorrhizal fungi and phosphorus on growth, carbohydrate partitioning and mineral nutrition of greenhouse cucumber (Cucumus sativus L.) plants during establishment. Canadian J. Plant Sci. 75:239-250.
Crossref
 
Valentine AJ, Osborne BA, Mitchell DT (2001). Interactions between phosphorus supply and total nutrient availability on mycorrhizal colonization, growth and photosynthesis of cucumber. Scien. Horti. 88:177-189.
Crossref
 
Vosatka M, Gryndler M (1999).Treatment with culture fractions from Pseudomonas putida modifies the development of Glomus fistulosum mycorrhiza and the response of potato and maize plants to inoculation. Appl. Soil Ecol. 11:245-251.
Crossref
 
Watanabe FS, Olsen SR (1965). Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci. Soci. America 29:677-678.
Crossref