African Journal of
Microbiology Research

  • Abbreviation: Afr. J. Microbiol. Res.
  • Language: English
  • ISSN: 1996-0808
  • DOI: 10.5897/AJMR
  • Start Year: 2007
  • Published Articles: 5233

Review

The immune response of silkworm, Bombyx mori

Qiang Wang
  • Qiang Wang
  • Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, P.R China
  • Google Scholar
Xiaoli Ju
  • Xiaoli Ju
  • School of Medicine, Jiangsu University, Zhenjiang, China
  • Google Scholar
Yang Zhou
  • Yang Zhou
  • Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, P.R China
  • Google Scholar
Liang Chen
  • Liang Chen
  • Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, P.R China
  • Google Scholar
Keping Chen*
  • Keping Chen*
  • Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, P.R China
  • Google Scholar


  •  Received: 08 March 2014
  •  Accepted: 29 August 2014
  •  Published: 17 September 2014

References

Asano T, Ashida M (2001). Cuticular pro-phenoloxidase of the silkworm, Bombyx mori. Purification and demonstration of its transport from hemolymph. J. Biol. Chem. 276:11100-11112
Crossref

 

Bao YY, Xue J, Wu WJ, Wang Y, Lv ZY, Zhang CX (2011). An immune-induced Reeler protein is involved in the Bombyx mori melanization cascade. Insect Biochem. Mol. Biol. 41:696-706
Crossref

 
 

Brennan CA, Anderson KV (2004). Drosophila: the genetics of innate immune recognition and response. Annu. Rev. Immunol. 22: 457-483
Crossref

 
 

Bulet P, Hetru C, Dimarcq JL, Hoffmann D (1999). Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol. 23: 329-344
Crossref

 
 

Cheng T, Zhao P, Liu C, Xu P, Gao Z, Xia Q, Xiang Z (2006). Structures, regulatory regions, and inductive expression patterns of antimicrobial peptide genes in the silkworm Bombyx mori. Genomics 87: 356-365
Crossref

 
 

Cheng TC, Zhang YL, Liu C, Xu PZ, Gao ZH, Xia QY, Xiang ZH (2008). Identification and analysis of Toll-related genes in the domesticated silkworm, Bombyx mori. Dev. Comp. Immunol. 32:464-475
Crossref

 
 

Clark KD, Strand MR (2013). Hemolymph Melanization in the Silkmoth Bombyx mori Involves Formation of a High Molecular Mass Complex That Metabolizes Tyrosine. J. Biol. Chem. 288:14476-14487
Crossref

 
 

Diao Y, Lu A, Yang B, Hu W, Peng Q, Ling QZ, Beerntsen BT, Soderhall K, Ling E (2012). Existence of prophenoloxidase in wing discs: a source of plasma prophenoloxidase in the silkworm, Bombyx mori. PLoS One 7: e41416
Crossref

 
 

Ferrandon D, Imler JL, Hetru C, Hoffmann JA (2007). The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat. Rev. Immunol. 7:862-874
Crossref

 
 

Flainik MF, Du Pasquier L (2004). Evolution of innate and adaptive immunity: can we draw a line? Trends Immunol. 25:640-644
Crossref

 
 

Furukawa S, Tanaka H, Ishibashi J, Imanishi S, Yamakawa M (2009). Functional characterization of a cactus homolog from the silkworm Bombyx mori. Biosci. Biotechnol. Biochem. 73:2665-2670
Crossref

 
 

Govind S (2008). Innate immunity in Drosophila: Pathogens and pathways. Insect Sci. 15:29-43
Crossref

 
 

Hamamoto H, Kurokawa K, Kaito C, Kamura K, Razanajatovo LM, Kusuhara H, Santa T, Sekimizu K (2004). Quantitative evaluation of the therapeutic effects of antibiotics using silkworms infected with human pathogenic microorganisms. Antimicrob. Agents Chemother. 48:774-779
Crossref

 
 

Hoffmann JA (2003). The immune response of Drosophila. Nature 426:33-38
Crossref

 
 

Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RAB (1999). Phylogenetic perspectives in innate immunity. Science 284:1313-1318
Crossref

 
 

Hu H, Wang C, Guo X, Li W, Wang Y, He Q (2013). Broad activity against porcine bacterial pathogens displayed by two insect antimicrobial peptides moricin and cecropin B. Mol. Cells 35:106-114
Crossref

 
 

Huang L, Cheng T, Xu P, Cheng D, Fang T, Xia Q (2009). A genome-wide survey for host response of silkworm, Bombyx mori during pathogen Bacillus bombyseptieus infection. PLoS One 4: e8098
Crossref

 
 

Imamura M, Nakahara Y, Kanda T, Tamura T, Taniai K (2006). A transgenic silkworm expressing the immune-inducible cecropin B-GFP reporter gene. Insect Biochem Mol Biol 36:429-434
Crossref

 
 

Imamura M, Yamakawa M (2002). Molecular cloning and expression of a Toll receptor gene homologue from the silkworm, Bombyx mori. Biochim. Biophys. Acta 1576:246-254
Crossref

 
 

International Silkworm Genome C (2008). The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem. Mol. Biol. 38:1036-1045
Crossref

 
 

Ishii K, Adachi T, Imamura K, Takano S, Usui K, Suzuki K, Hamamoto H, Watanabe T, Sekimizu K (2012). Serratia marcescens induces apoptotic cell death in host immune cells via a lipopolysaccharide- and flagella-dependent mechanism. J. Biol. Chem. 287:36582-36592
Crossref

 
 

Kaito C, Akimitsu N, Watanabe H, Sekimizu K (2002). Silkworm larvae as an animal model of bacterial infection pathogenic to humans. Microb. Pathog. 32:183-190
Crossref

 
 

Kaito C, Kurokawa K, Matsumoto Y, Terao Y, Kawabata S, Hamada S, Sekimizu K (2005). Silkworm pathogenic bacteria infection model for identification of novel virulence genes. Mol. Microbiol. 56:934-944
Crossref

 
 

Kaito C, Sekimizu K (2007). A silkworm model of pathogenic bacterial infection. Drug Discov. Ther. 1:89-93
Pubmed

 
 

Kaneko T, Silverman N (2005). Bacterial recognition and signalling by the Drosophila IMD pathway. Cell Microbiol. 7:461-469
Crossref

 
 

Kaneko Y, Tanaka H, Ishibashi J, Iwasaki T, Yamakawa M (2008). Gene expression of a novel defensin antimicrobial peptide in the silkworm, Bombyx mori. Biosci. Biotechnol. Biochem. 72:2353-2361
Crossref

 
 

Kawaoka S, Katsuma S, Daimon T, Isono R, Omuro N, Mita K, Shimada T (2008). Functional analysis of four Gloverin-like genes in the silkworm, Bombyx mori. Arch. Insect Biochem. Physiol. 67:87-96
Crossref

 
 

Kimbrell DA, Beutler B (2001). The evolution and genetics of innate immunity. Nat. Rev. Genet. 2:256-267
Crossref

 
 

Leclerc V, Reichhart JM (2004). The immune response of Drosophila melanogaster. Immunol. Rev. 198:59-71
Crossref

 
 

Lee WJ, Lee JD, Kravchenko VV, Ulevitch RJ, Brey PT (1996). Purification and molecular cloning of an inducible gram-negative bacteria-binding protein from the silkworm, Bombyx mori. Proc. Natl. Acad. Sci. USA 93:7888-7893
Crossref

 
 

Lemaitre B, Hoffmann J (2007). The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25:697-743
Crossref

 
 

Ling E, Shirai K, Kanekatsu R, Kiguchi K (2005). Hemocyte differentiation in the hematopoietic organs of the silkworm, Bombyx mori: prohemocytes have the function of phagocytosis. Cell Tissue Res. 320:535-543
Crossref

 
 

Loker ES, Adema CM, Zhang SM, Kepler TB (2004). Invertebrate immune systems--not homogeneous, not simple, not well understood. Immunol. Rev. 198:10-24
Crossref

 
 

Mita K, Kasahara M, Sasaki S, Nagayasu Y, Yamada T, Kanamori H, Namiki N, Kitagawa M, Yamashita H, Yasukochi Y, Kadono-Okuda K, Yamamoto K, Ajimura M, Ravikumar G, Shimomura M, Nagamura Y, Shin IT, Abe H, Shimada T, Morishita S, Sasaki T (2004). The genome sequence of silkworm, Bombyx mori. DNA Res. 11:27-35
Crossref

 
 

Mizuguchi K, Parker JS, Blundell TL, Gay NJ (1998). Getting knotted: a model for the structure and activation of Spatzle. Trends Biochem. Sci. 23: 239-242
Crossref

 
 

Morisato D, Anderson KV (1994). The spatzle gene encodes a component of the extracellular signaling pathway establishing the dorsal-ventral pattern of the Drosophila embryo. Cell 76:677-688
Crossref

 
 

Muller U, Vogel P, Alber G, Schaub GA (2008). The innate immune system of mammals and insects. Contrib. Microbiol. 15:21-44
Pubmed

 
 

Ochiai M, Ashida M (1999a). A pattern recognition protein for peptidoglycan - Cloning the cDNA and the gene of the silkworm, Bombyx mori. J. Biol. Chem. 274:11854-11858
Crossref

 
 

Ochiai M, Ashida M (1999b). A pattern recognition protein for peptidoglycan. Cloning the cDNA and the gene of the silkworm, Bombyx mori. J. Biol. Chem. 274:11854-11858
Crossref

 
 

Rowley AF, Powell A (2007). Invertebrate immune systems specific, quasi-specific, or nonspecific? J. Immunol. 179:7209-7214
Crossref

 
 

Royet J, Dziarski R (2007). Peptidoglycan recognition proteins: pleiotropic sensors and effectors of antimicrobial defences. Nat. Rev. Microbiol. 5: 264-277
Crossref

 
 

Royet J, Gupta D, Dziarski R (2011). Peptidoglycan recognition proteins: modulators of the microbiome and inflammation. Nat. Rev. Immunol. 11:837-851
Pubmed

 
 

Royet J, Reichhart JM, Hoffmann JA (2005). Sensing and signaling during infection in Drosophila. Curr. Opin. Immunol. 17:11-17
Crossref

 
 

Sagisaka A, Fujita K, Nakamura Y, Ishibashi J, Noda H, Imanishi S, Mita K, Yamakawa M, Tanaka H (2010). Genome-wide analysis of host gene expression in the silkworm cells infected with Bombyx mori nucleopolyhedrovirus. Virus Res. 147:166-175
Crossref

 
 

Steiner H, Hultmark D, Engstrom A, Bennich H, Boman HG (1981). Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292:246-248
Crossref

 
 

Takahasi K, Ochiai M, Horiuchi M, Kumeta H, Ogura K, Ashida M, Inagaki F (2009). Solution structure of the silkworm betaGRP/GNBP3 N-terminal domain reveals the mechanism for beta-1,3-glucan-specific recognition. Proc. Natl. Acad. Sci. USA 106: 11679-11684
Crossref

 
 

Tan J, Xu M, Zhang K, Wang X, Chen S, Li T, Xiang Z, Cui H (2013). Characterization of hemocytes proliferation in larval silkworm, Bombyx mori. J. Insect Physiol. 59:595-603
Crossref

 
 

Tanaka H, Ishibashi J, Fujita K, Nakajima Y, Sagisaka A, Tomimoto K, Suzuki N, Yoshiyama M, Kaneko Y, Iwasaki T, Sunagawa T, Yamaji K, Asaoka A, Mita K, Yamakawa M (2008). A genome-wide analysis of genes and gene families involved in innate immunity of Bombyx mori. Insect Biochem. Mol. Biol. 38:1087-1110
Crossref

 
 

Tanaka H, Matsuki H, Furukawa S, Sagisaka A, Kotani E, Mori H, Yamakawa M (2007). Identification and functional analysis of Relish homologs in the silkworm, Bombyx mori. Biochim. Biophys. Acta 1769:559-568
Crossref

 
 

Tanaka H, Sagisaka A, Nakajima Y, Fujita K, Imanishi S, Yamakawa M (2009). Correlation of Differential Expression of Silkworm Antimicrobial Peptide Genes with Different Amounts of Rel Family Proteins and Their Gene Transcriptional Activity. Biosci. Biotechnol. Biochem. 73:599-606
Crossref

 
 

Tanaka H, Yamamoto M, Moriyama Y, Yamao M, Furukawa S, Sagisaka A, Nakazawa H, Mori H, Yamakawa M (2005). A novel Rel protein and shortened isoform that differentially regulate antibacterial peptide genes in the silkworm Bombyx mori. Biochim. Biophys. Acta 1730:10-21.
Crossref

 
 

Taniai K, Wago H, Yamakawa M (1997). In vitro phagocytosis of Escherichia coli and release of lipopolysaccharide by adhering hemocytes of the silkworm, Bombyx mori. Biochem. Biophys. Res. Commun. 231:623-627
Crossref

 
 

Valanne S, Wang JH, Ramet M (2011). The Drosophila Toll signaling pathway. J. Immunol. 186: 649-656
Crossref

 
 

Wago H (1982). Cellular recognition of foreign materials by Bombyx mori phagocytes: I. Immunocompetent cells. Dev. Comp. Immunol. 6:591-599
Pubmed

 
 

Wang F, Hu C, Hua X, Song L, Xia Q (2013). Translationally controlled tumor protein, a dual functional protein involved in the immune response of the silkworm, Bombyx mori. PLoS One 8: e69284
Crossref

 
 

Wang Y, Cheng T, Rayaprolu S, Zou Z, Xia Q, Xiang Z, Jiang H (2007). Proteolytic activation of pro-spatzle is required for the induced transcription of antimicrobial peptide genes in lepidopteran insects. Dev. Comp. Immunol. 31:1002-1012
Crossref

 
 

Watanabe A, Miyazawa S, Kitami M, Tabunoki H, Ueda K, Sato R (2006). Characterization of a novel C-type lectin, Bombyx mori multibinding protein, from the B. mori hemolymph: mechanism of wide-range microorganism recognition and role in immunity. J. Immunol. 177:4594-4604
Crossref

 
 

Wen H, Lan X, Cheng T, He N, Shiomi K, Kajiura Z, Zhou Z, Xia Q, Xiang Z, Nakagaki M (2009). Sequence structure and expression pattern of a novel anionic defensin-like gene from silkworm (Bombyx mori). Mol. Biol. Rep. 36:711-716
Crossref

 
 

Williams MJ (2007). Drosophila hemopoiesis and cellular immunity. J. Immunol. 178:4711-4716
Crossref

 
 

Wu S, Zhang X, Chen X, Cao P, Beerntsen BT, Ling E (2010a). BmToll9, an Arthropod conservative Toll, is likely involved in the local gut immune response in the silkworm, Bombyx mori. Dev. Comp. Immunol. 34:93-96
Crossref

 
 

Wu S, Zhang X, He Y, Shuai J, Chen X, Ling E (2010b). Expression of antimicrobial peptide genes in Bombyx mori gut modulated by oral bacterial infection and development. Dev. Comp. Immunol. 34:1191-1198
Crossref

 
 

Xia Q, Guo Y, Zhang Z, Li D, Xuan Z, Li Z, Dai F, Li Y, Cheng D, Li R, Cheng T, Jiang T, Becquet C, Xu X, Liu C, Zha X, Fan W, Lin Y, Shen Y, Jiang L, Jensen J, Hellmann I, Tang S, Zhao P, Xu H, Yu C, Zhang G, Li J, Cao J, Liu S, He N, Zhou Y, Liu H, Zhao J, Ye C, Du Z, Pan G, Zhao A, Shao H, Zeng W, Wu P, Li C, Pan M, Yin X, Wang J, Zheng H, Wang W, Zhang X, Li S, Yang H, Lu C, Nielsen R, Zhou Z, Xiang Z (2009). Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science 326: 433-436.
Crossref

 
 

Xia Q, Zhou Z, Lu C, Cheng D, Dai F, Li B, Zhao P, Zha X, Cheng T, Chai C, Pan G, Xu J, Liu C, Lin Y, Qian J, Hou Y, Wu Z, Li G, Pan M, Li C, Shen Y, Lan X, Yuan L, Li T, Xu H, Yang G, Wan Y, Zhu Y, Yu M, Shen W, Wu D, Xiang Z, Yu J, Wang J, Li R, Shi J, Li H, Li G, Su J, Wang X, Li G, Zhang Z, Wu Q, Li J, Zhang Q, Wei N, Xu J, Sun H, Dong L, Liu D, Zhao S, Zhao X, Meng Q, Lan F, Huang X, Li Y, Fang L, Li C, Li D, Sun Y, Zhang Z, Yang Z, Huang Y, Xi Y, Qi Q, He D, Huang H, Zhang X, Wang Z, Li W, Cao Y, Yu Y, Yu H, Li J, Ye J, Chen H, Zhou Y, Liu B, Wang J, Ye J, Ji H, Li S, Ni P, Zhang J, Zhang Y, Zheng H, Mao B, Wang W, Ye C, Li S, Wang J, Wong GK, Yang H, Biology Analysis G (2004). A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 306:1937-1940
Crossref

 
 

Xu Q, Lu A, Xiao G, Yang B, Zhang J, Li X, Guan J, Shao Q, Beerntsen BT, Zhang P, Wang C, Ling E (2012). Transcriptional profiling of midgut immunity response and degeneration in the wandering silkworm, Bombyx mori. PLoS One 7: e43769
Crossref

 
 

Yamakawa M, Tanaka H (1999). Immune proteins and their gene expression in the silkworm, Bombyx mori. Dev. Comp. Immunol. 23: 281-289
Crossref

 
 

Yoshida H, Kinoshita K, Ashida M (1996). Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. J. Biol. Chem. 271:13854-13860
Crossref

 
 

Zhou ZH, Yang HJ, Chen M, Lou CF, Zhang YZ, Chen KP, Wang Y, Yu ML, Yu F, Li JY, Zhong BX (2008). Comparative Proteomic Analysis between the Domesticated Silkworm (Bombyx mori) Reared on Fresh Mulberry Leaves and on Artificial Diet. J. Proteome Res. 7:5103-5111
Crossref