African Journal of
Microbiology Research

  • Abbreviation: Afr. J. Microbiol. Res.
  • Language: English
  • ISSN: 1996-0808
  • DOI: 10.5897/AJMR
  • Start Year: 2007
  • Published Articles: 5233

Full Length Research Paper

Antifungal activity of nanofungicide Trifloxystrobin 25% + Tebuconazole 50% against Macrophomina phaseolina

G. Dileep Kumar*
  • G. Dileep Kumar*
  • Department of Seed Science and Technology, Tamil Nadu Agricultural University, Coimbatore -641003, Tamil Nadu, India.
  • Google Scholar
N. Natarajan
  • N. Natarajan
  • Department of Nano Science and Technology, Tamil Nadu Agricultural University, Coimbatore -641003, Tamil Nadu, India.
  • Google Scholar
S. Nakkeeran
  • S. Nakkeeran
  • Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore -641003, Tamil Nadu, India.
  • Google Scholar


  •  Received: 02 August 2015
  •  Accepted: 03 November 2015
  •  Published: 28 January 2016

References

Allahverdiyev AM, Emrah SA, Malahat B, Miriam R (2011). Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol. 6:933-940.
Crossref
 
Anandraj K (2013). Effect of nanoparticles for the maintenance of onion seed vigour and viability. M.Sc. Thesis, Tamil Nadu Agricultural University, Coimbatore.
 
Diourte M, Starr JL, Jeger MJ, Stack JP, Rosenow DT (1995). Charcoal rot (Macrophomina phaseolina) resistance and the effects of stress on disease development in sorghum. Plant Pathol. 44:196-202.
Crossref
 
Duncan TV (2011). Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J. Colloid Interface Sci. 363:1-24.
Crossref
 
Gogoi R, Dureja PS, Pradeep K (2009).Nanoformulations-A safer and effective option for agrochemicals. Indian Farming 59:7-12.
 
Gogoi R, Singh PK, Kumar R, Nair KK, Alam I, Srivastava C, Yadav S, Gopal M, Choudhury SR, Goswami A (2013). Suitability of Nano-sulphur for Biorational Management of Powdery mildew of Okra (Abelmoschus esculentus Moench) caused by Erysiphe cichoracearum. J. Plant Pathol. Microbiol. 4:171
Crossref
 
Gong P, Li H, He X, Wang K, Hu J, Zhang S, Yang X (2007). Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18:28.
Crossref
 
Hall R (1991). Compendium of Bean Diseases. The American Phytopathological Society. St. Paul. Minnesota. USA. P 73.
 
Javaid A, Saddique A (2011). Management of Macrophomina root rot of mungbean using dry leaves manure of Datura metel as soil amendment. Span. J. Agric. Res. 9:901905.
Crossref
 
Kumar SS (2011).Customizing nanoparticles for the maintanence of seed vigour and viability in Blackgram (Vigna mungo) cv. VBN 4. M.Sc. Thesis, Tamil Nadu Agricultural University, Coimbatore.
 
Mayek-Pérez N, Garcia-Espinosa R, LópezCasta-eda C, Acosta-Gallegos JA, Simpson J (2002). Water relations, histopathology, and growth of common bean (Phaseolus vulgaris L.) during pathogenesis of Macrophomina phaseolina under drought stress. Physiol. Mol. Plant Pathol. 60:185-195.
Crossref
 
Packia Lekshmi NCJ, Benarcin Sumi S, Viveka S, Jeeva S, Raja Brindha J (2012). Antibacterial activity of nanoparticles from Allium sp. J. Microbiol. Biotechnol. Res. 2(1):115-119.
 
Pal S, Tak YK, Song JM (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73:1712-1720.
Crossref
 
Patolsky F, Zheng G, Lieber CM (2006). Nanowire sensors for medicine and life sciences. Nanomedicine 1:51-65.
Crossref
 
Rai M, Yadav A, Gade A (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27(1):76-83.
Crossref
 
Remesal E, Landa BB, Jimenez MD, Navas JA (2013). Sequence variation in two protein coding genes correlates with mycelial compatibility groupings in Sclerotium rolfsii. Pak. J. Phytopathol. 103:479-487.
Crossref
 
Scrinis G, Lyons K (2007). The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems.Int. J. Sociol. Food Agric.15:22-44.
 
Shrivastava S, Bera T, Roy A, Gajendra S, Ramachandrarao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18:9.
Crossref
 
Shyla K, Natarajan N, Nakkeeran S. (2014). Antifungal Activity of Zinc Oxide, Silver and Titanium Dioxide Nanoparticles against Macrophomina phaseolina. J. Mycol. Plant Pathol. 44(3):269-274.
 
Spacciapoli P, Buxton D, Rothstein D, Friden P (2001). Antimicrobial activity of silver nitrate against periodontal pathogens. J. Periodontal Res. 36:108-13.
Crossref
 
Sridhar C (2012). Effect of nanoparticles for the maintenance of tomato seed vigour and viability. M.Sc. Thesis, Tamil Nadu Agricultural University, Coimbatore.