African Journal of
Microbiology Research

  • Abbreviation: Afr. J. Microbiol. Res.
  • Language: English
  • ISSN: 1996-0808
  • DOI: 10.5897/AJMR
  • Start Year: 2007
  • Published Articles: 5183

Full Length Research Paper

Improving ethanol production by co-culturing of Saccharomyces cerevisiae with Candida tropicalis from rice husk hydrolysate media

Sopandi T.*
  • Sopandi T.*
  • Department of Biology, Faculty of Mathematical and Natural Science, University of PGRI Adi Buana, Surabaya, Indonesia. Jl. Dukuh Menanggal XII, 60234. Surabaya, East Java. Indonesia.
  • Google Scholar
Wardah A.
  • Wardah A.
  • Faculty of Economy, University of 17 Agustus 1945, Jl, Semolowaru 45.60119 Surabaya, East Java. Indonesia.
  • Google Scholar


  •  Received: 07 November 2016
  •  Accepted: 15 December 2016
  •  Published: 21 January 2017

References

Alexandre H, Charpentier C (1998). Biochemical aspects of stuck and sluggish fermentation in grape must. J. Ind. Microbiol Biotechnol. 20:20-27.
Crossref

 

American Society of Agronomy and Soil Science Society of America (1982). Methods of Soil Analysis. 2nd edition, Part 2. In Page et al (Eds.). Chemical and Microbiological Properties. Madison, Wisconsin, USA.

 

Beltran G, Esteve-Zarzoso B, Rozes N, Mas A, Guillamon JM (2005).Influence of the timing of nitrogen additions during synthetic grape must fermentations on fermentation kinetics and nitrogen consumption. J. Agric. Food. Chem. 53(4):996-1002.
Crossref

 

Bisson L (1999). Stuck and sluggish fermentations. Am. J. Enol. Vitic. 50:107-119.

 

Cardona CA, Sa’nchez OJ (2007). Fuel ethanol production: process design trends and integration opportunities. Bioresour. Technol. 98:2415-2457.
Crossref

 

Cheng KK, Wu J, Lin ZN, Zhang JZA (2014). Aerobic and sequential anaerobic fermentation to produce xylitol and ethanol using non-detoxified acid pretreated corncob. Biotechnol. Biofuels. 7:166.
Crossref

 

Chniti S, Jemni M, Rejeb ZB, Chaabane H, Hassouna M, Amrane A, Djelal H (2015). Effect of the Nitrogen Source on Bioethanol Production from Syrup Dates by Saccharomyces cerevisiae. Inter. Agric. Innov. Res. 4(3):530-535.

 

Eiadpum A, Limtong S, Phisalaphong M (2012). High-temperature ethanol fermentation by immobilized coculture of Kluyveromyces marxianus and Saccharomyces cerevisiae. 114(3):325-329.

 

Fernández-López CL, Torrestiana-Sánchez B, Salgado-Cervantes MA, García PG, Aguilar-Uscanga MG (2012). Use of sugarcane molasses "B" as an alternative for ethanol production with wild-type yeast Saccharomyces cerevisiae ITV-01 at high sugar concentrations. Bioproc. Biosys. Eng. 35(4): 605-614.
Crossref

 

Fleet G, Heard G (1992). Yeasts—growth during fermentation, p. 27-54. In G. H. Fleet (ed.), Wine microbiology and biotechnology. Harwood Academic Publishers, Camberwell, Australia.

 

Gaffa T, Krakwowkiak A (1997). Production of ethyl alcohol from molasses using continuous process. Nig. J. Biotech. 8(1):35-39.

 

Hickert LR, Da Cunha-Pereira F, De Souza-Cruz PB, Rosa CA, Ayub MAZ (2013). Ethanogenic fermentation of cocultures of Candida shehatae HM 52.2 and Saccharomyces cerevisiae ICVD254 in synthetic mediumand rice hull hydrolysate. Biores. Technol. 131:508-514.
Crossref

 

Hu N, Yuan B, Sun J, Wang SA, Li FL (2012). Thermotolerant Kluyveromyces marxianus and Saccharomyces cerevisiae strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing. Appl. Microbiol. Biotechnol. 95(5):1359-1368.
Crossref

 

Ishola MM, Taherzadeh MJ (2014). Effect of fungal and phosphoric acid pretreatment on ethanol production from oil palm empty fruit bunches (OPEFB). Biores Technol. 165:9-12.
Crossref

 

Jeffries TW, Jin YS (2004). Metabolic engineering for improved fermentation of pentoses by yeasts. Appl. Microbiol. Biotechnol. 63(5):495-509.
Crossref

 

Jones AM, Thomas KC, Ingledew WM (1994). Ethanolic fermentation of blackstrap molasses and sugarcane juice using very high gravity technology. J. Agric. Food. Chem. 42(5):1242-1246.
Crossref

 

Jones AM, Ingledew W (1994). Fuel alcohol production: appraisal of nitrogenous yeast foods for very high gravity wheat mash fermentation. Process Biochem.29:483-488.
Crossref

 

Kumar R, Singh S, Singh OV (2008). Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 35:377-391.
Crossref

 

Laopaiboon L, Nuanpang S, Srinophakun P, Klanrit P, Laopaiboon P (2009). Ethanol production from sweet sorghum juice using very high gravity technology: Effects of carbon and nitrogen supplementations. Bioresour. Technol. 100(18):4176-4182.
Crossref

 

Larsson C, von Stockar U, Marison I, Gustafsson L (1993). Growth and metabolism of Saccharomyces cerevisiae in chemostat cultures under carbon-, nitrogen-, or carbon- and nitrogen-limiting conditions. J. Bacteriol. 175:4809-4816.
Crossref

 

Larsson C, von Stockar U, Marison I, Gustafsson L (1993). Growth and metabolism of Saccharomyces cerevisiae in chemostat cultures under carbon-, nitrogen-, or carbon- and nitrogen-limiting conditions. J. Bacteriol.175:4809-4816.
Crossref

 

Larsson S, Cassland P, Jonsson LJ (2001). Development of a Saccharomyces cerevisiae Strain with Enhanced Resistance to Phenolic Fermentation Inhibitors in Lignocellulose Hydrolysates by Heterologous Expression of Laccase. Appl. Environ. Microbiol. 67(3): 1163-1170.
Crossref

 

Lee WC, Huang CT (2000). Modeling of ethanol fermentation using Zymomonas mobilis ATCC 10988 grown on the media containing glucose and fructose. Biochem. Eng. J. 4 (3):217-227.
Crossref

 

Li Z, Wang D, Shi YC (2016). Effects of nitrogen source on ethanol production in very high gravity fermentation of corn starch. J. Taiwan. Inst. Chem. Eng. 70:229-235.
Crossref

 

Lin Y, Tanaka S (2006). Ethanol fermentation from biomass resources: current state and prospects. Appl. Environ. Microbiol. 69(6):627–642.
Crossref

 

Lin Y, Zhang W, Li C, Sakakibara K, Tanaka S, Kong H (2012). Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass and Bioenergy. 47:395-401.
Crossref

 

Mateo S, Puentes JG, Moya AJ, Sánchez S (2015). Ethanol and xylitol production by fermentation of acid hydrolysate from olive pruning with Candida tropicalis NBRC 0618. Bioresour. Technol.190:1-6.
Crossref

 

Mielenz JR (2001). Ethanol production from biomass: technology and commercialization status. Curr. Opin. Microbiol. 4:324-329.
Crossref

 

Mongkolchaiarunya S, Vaithanomsat P, Chuntranuluck S (2016). Effect of Nitrogen Source on Ethanol Production from Weeds by a Simultaneous Saccharification and Fermentation Process. KKU Res.j. 22(1):210-213.

 

Murtagh TE (1999). Molasses as a feedstock for alcohol production. In: Jacques KA, Lyons TP, Kelsall DR, editors. The Alcohol Textbook. 2nd edition. London, UK: Nottingham University Press.

 

Oberoi HS, Vadlani PV, Brijwani K, Bhargav VK, Patil RT (2010). Enhanced ethanol production via fermentation of rice straw with hydrolysate-adapted Candida tropicalis ATCC 13803. Process Biochem. 45(8):1299-1306.
Crossref

 

Ofoefule AU, Onyeoziri MC, Uzodinma EO (2011). Comparative study of biogas production from chemically-treated powdered and un-powdered rice husks. Envir. Chem. Ecotoxicol. 3(4):75-79.

 

Parawira W, Tekere M (2011). Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit. Rev. Biotechnol. 1(1):20-31.
Crossref

 

Parkash A (2015). Modeling of Ethanol Production from Molasses: A Review. Ind. Chem. 1:2.
Crossref

 

Park EY, Naruse K, Kato T (2012). One-pot bioethanol production from cellulose by co-culture of Acremonium cellulolyticus and Saccharomyces cerevisiae. Biotechnol. Biofuels. 5(64):2-11.
Crossref

 

Reddy TKS, Pushpa A (2012). Studies on characterizations of agriculture waste (rice husk) for the production of ethanol. J. Environ. Res. Develop. 7(2):1076-1084.

 

Sadik MW, Halema AA (2014). Production of Ethanol from Molasses and Whey Permeate Using Yeasts and Bacterial Strains. Int. J. Curr. Microbiol. App. Sci. 3(3): 804-818.

 

Salmon J (1989). Effect of sugar transport inactivation in Saccharomyces cerevisiae on sluggish and stuck enological fermentations. Appl. Environ. Microbiol. 55:953-958.

 

Service RF (2007). Cellulosic ethanol: biofuel researchers prepare to reap a new harvest. Science 315:1488-1491.
Crossref

 

Sharma SK (2000). Saccharifi cation and bioethanol production from sunfl ower stalks and hulls. Ph.D. Thesis, Punjab Agricultural University, Ludhiana, India.

 

Singh A, Bajar S, Bishnoi NR (2014). Enzymatic hydrolysis of microwave alkali pretreated rice husk for ethanol production by Saccharomyces cerevisiae, Scheffersomyces stipitis and their coculture. Fuel. 116:699-702.
Crossref

 

Sopandi T, Wardah A (2015). Sugar consumption in mono and co-culture Saccharomyces cerevisiae and others selected microorganism for bioethanol production from stream rice husk medium. Asian. J. Microbiol. Biotechnol. Environ. Sci. 17(3):89-98.

 

Srichuwong S, Fujiwara M, Wang X, Seyama T, Shiroma R (2009). Simultaneous saccharification and fermentation (SSF) of very high gravity (VHG) potato mash for the production of ethanol. Biomass Bioenergy. 33(5):890-898.
Crossref

 

Taherzadeh MJ, Karimi K (2011). Fermentation inhibitors in ethanol processes and different strategies to reduce their effects. Biofuels. 287-311.
Crossref

 

Telew C, Kereh VG, Untu IM, Rembet (2013). The improvement of the rice husk nutritional value with a biotechnology Effective microorganisms (EM4) as an organic feed ingredient. Zootek J. 32(5):1-8.

 

Tesfaw A, Assefa F (2014). Current Trends in Bioethanol Production by Saccharomyces cerevisiae: Substrate, Inhibitor Reduction, Growth Variables, Coculture, and Immobilization. Rev. Art. Inter. Scho. Res Not. pp. 1-11.

 

Thomas KC, Hynes SH, Ingledew WM (1996). Effect of nitrogen limitation on synthesis of enzymes in Saccharomyces cerevisiae during fermentation of high concentration of carbohydrates. Biotechnol. Lett. 18:1165-1168.
Crossref

 

Tom’as AF, Karag¨oz P, Karakashev D, Angelidaki I (2013). Extreme thermophilic ethanol production from rapeseed straw: using the newly isolated Thermoanaerobacter pentosaceus and combining it with Saccharomyces cerevisiae in a two-step process. Biotechnol. Bioeng. 110(6):1574-1582.
Crossref

 

Tyagi RD, Ghose TK (1980). Batch and multistage continuous ethanol fermentation of cellulose hydrolysate and optimum design of fermentor by graphical analysis. Biotechnol. Bioeng. 22(9):1907-1928.
Crossref

 

Varela C, Pizarro F, Agosin E (2004). Biomass Content Governs Fermentation Rate in Nitrogen-Deficient Wine Musts. Appl. Environ. Microbiol. 70(6):3392-3400.
Crossref

 

Verma G, Nigam P, Singh D, Chaudhary K (2000). Bioconversion of starch to ethanol in a single step process by co-culture of amylolytic yeasts and Saccharomyces cerevisiae. Bioresour. 72:261-266.
Crossref

 

Vilanova M, Ugliano M, Varela C, Siebert T, Pretorius IS, Henschke PA (2007). Assimilable nitrogen utilisation and production of volatile and non-volatile compounds in chemically defined medium by Saccharomyces cerevisiae wine yeasts. Appl. Microbiol. Biotechnol. 77(1):145-157.
Crossref

 

Walkey C, Black CA. (1965). Soil organic matter in methods of soil analysis. C.A. Black, Ed. Agronomy No 9, Part 2, American Society of Agronomy, Madison, WI.

 

Wan P, Zhai D, Wang Z, Yang X, Tian S (2012). Ethanol Production from Nondetoxified Dilute-Acid Lignocellulosic Hydrolysate by Cocultures of Saccharomyces cerevisiae Y5 and Pichia stipitis CBS6054. Biotechnol, Res. Inter. pp. 6-11.
Crossref

 

Wang XD, Bohlscheid JC, Edwards CG (2003). Fermentative activity and production of volatile compounds by Saccharomyces grown in synthetic grape juice media deficient in assimilable nitrogen and/or panthotenic acid. J. Appl. Microbiol. 94:349-359.
Crossref

 

Wang M, Han J, Dunn JB, Cai H, Elgowainy A (2012). Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use. Environ. Res. Lett. 7(4):1-13.
Crossref

 

Wright JD (1988). Ethanol from biomass by enzymatic hydrolysis. Chem. Eng. Prog. 84:62-74.

 

Yue G, Yu J, Zhang X, Tan T (2010). The influence of nitrogen sources on ethanol production by yeast from concentrated sweet sorghum juice. Biomass. Bioenerg. 39:48-52.
Crossref

 

Zaldivar J, Nielsen J, Olsson L (2001). Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl. Microbiol. Biotechnol. 56:17-34.
Crossref