Full Length Research Paper
References
Alexandre H, Charpentier C (1998). Biochemical aspects of stuck and sluggish fermentation in grape must. J. Ind. Microbiol Biotechnol. 20:20-27. |
|
American Society of Agronomy and Soil Science Society of America (1982). Methods of Soil Analysis. 2nd edition, Part 2. In Page et al (Eds.). Chemical and Microbiological Properties. Madison, Wisconsin, USA. |
|
Beltran G, Esteve-Zarzoso B, Rozes N, Mas A, Guillamon JM (2005).Influence of the timing of nitrogen additions during synthetic grape must fermentations on fermentation kinetics and nitrogen consumption. J. Agric. Food. Chem. 53(4):996-1002. |
|
Bisson L (1999). Stuck and sluggish fermentations. Am. J. Enol. Vitic. 50:107-119. |
|
Cardona CA, Sa’nchez OJ (2007). Fuel ethanol production: process design trends and integration opportunities. Bioresour. Technol. 98:2415-2457. |
|
Cheng KK, Wu J, Lin ZN, Zhang JZA (2014). Aerobic and sequential anaerobic fermentation to produce xylitol and ethanol using non-detoxified acid pretreated corncob. Biotechnol. Biofuels. 7:166. |
|
Chniti S, Jemni M, Rejeb ZB, Chaabane H, Hassouna M, Amrane A, Djelal H (2015). Effect of the Nitrogen Source on Bioethanol Production from Syrup Dates by Saccharomyces cerevisiae. Inter. Agric. Innov. Res. 4(3):530-535. |
|
Eiadpum A, Limtong S, Phisalaphong M (2012). High-temperature ethanol fermentation by immobilized coculture of Kluyveromyces marxianus and Saccharomyces cerevisiae. 114(3):325-329. |
|
Fernández-López CL, Torrestiana-Sánchez B, Salgado-Cervantes MA, García PG, Aguilar-Uscanga MG (2012). Use of sugarcane molasses "B" as an alternative for ethanol production with wild-type yeast Saccharomyces cerevisiae ITV-01 at high sugar concentrations. Bioproc. Biosys. Eng. 35(4): 605-614. |
|
Fleet G, Heard G (1992). Yeasts—growth during fermentation, p. 27-54. In G. H. Fleet (ed.), Wine microbiology and biotechnology. Harwood Academic Publishers, Camberwell, Australia. |
|
Gaffa T, Krakwowkiak A (1997). Production of ethyl alcohol from molasses using continuous process. Nig. J. Biotech. 8(1):35-39. |
|
Hickert LR, Da Cunha-Pereira F, De Souza-Cruz PB, Rosa CA, Ayub MAZ (2013). Ethanogenic fermentation of cocultures of Candida shehatae HM 52.2 and Saccharomyces cerevisiae ICVD254 in synthetic mediumand rice hull hydrolysate. Biores. Technol. 131:508-514. |
|
Hu N, Yuan B, Sun J, Wang SA, Li FL (2012). Thermotolerant Kluyveromyces marxianus and Saccharomyces cerevisiae strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing. Appl. Microbiol. Biotechnol. 95(5):1359-1368. |
|
Ishola MM, Taherzadeh MJ (2014). Effect of fungal and phosphoric acid pretreatment on ethanol production from oil palm empty fruit bunches (OPEFB). Biores Technol. 165:9-12. |
|
Jeffries TW, Jin YS (2004). Metabolic engineering for improved fermentation of pentoses by yeasts. Appl. Microbiol. Biotechnol. 63(5):495-509. |
|
Jones AM, Thomas KC, Ingledew WM (1994). Ethanolic fermentation of blackstrap molasses and sugarcane juice using very high gravity technology. J. Agric. Food. Chem. 42(5):1242-1246. |
|
Jones AM, Ingledew W (1994). Fuel alcohol production: appraisal of nitrogenous yeast foods for very high gravity wheat mash fermentation. Process Biochem.29:483-488. |
|
Kumar R, Singh S, Singh OV (2008). Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 35:377-391. |
|
Laopaiboon L, Nuanpang S, Srinophakun P, Klanrit P, Laopaiboon P (2009). Ethanol production from sweet sorghum juice using very high gravity technology: Effects of carbon and nitrogen supplementations. Bioresour. Technol. 100(18):4176-4182. |
|
Larsson C, von Stockar U, Marison I, Gustafsson L (1993). Growth and metabolism of Saccharomyces cerevisiae in chemostat cultures under carbon-, nitrogen-, or carbon- and nitrogen-limiting conditions. J. Bacteriol. 175:4809-4816. |
|
Larsson C, von Stockar U, Marison I, Gustafsson L (1993). Growth and metabolism of Saccharomyces cerevisiae in chemostat cultures under carbon-, nitrogen-, or carbon- and nitrogen-limiting conditions. J. Bacteriol.175:4809-4816. |
|
Larsson S, Cassland P, Jonsson LJ (2001). Development of a Saccharomyces cerevisiae Strain with Enhanced Resistance to Phenolic Fermentation Inhibitors in Lignocellulose Hydrolysates by Heterologous Expression of Laccase. Appl. Environ. Microbiol. 67(3): 1163-1170. |
|
Lee WC, Huang CT (2000). Modeling of ethanol fermentation using Zymomonas mobilis ATCC 10988 grown on the media containing glucose and fructose. Biochem. Eng. J. 4 (3):217-227. |
|
Li Z, Wang D, Shi YC (2016). Effects of nitrogen source on ethanol production in very high gravity fermentation of corn starch. J. Taiwan. Inst. Chem. Eng. 70:229-235. |
|
Lin Y, Tanaka S (2006). Ethanol fermentation from biomass resources: current state and prospects. Appl. Environ. Microbiol. 69(6):627–642. |
|
Lin Y, Zhang W, Li C, Sakakibara K, Tanaka S, Kong H (2012). Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass and Bioenergy. 47:395-401. |
|
Mateo S, Puentes JG, Moya AJ, Sánchez S (2015). Ethanol and xylitol production by fermentation of acid hydrolysate from olive pruning with Candida tropicalis NBRC 0618. Bioresour. Technol.190:1-6. |
|
Mielenz JR (2001). Ethanol production from biomass: technology and commercialization status. Curr. Opin. Microbiol. 4:324-329. |
|
Mongkolchaiarunya S, Vaithanomsat P, Chuntranuluck S (2016). Effect of Nitrogen Source on Ethanol Production from Weeds by a Simultaneous Saccharification and Fermentation Process. KKU Res.j. 22(1):210-213. |
|
Murtagh TE (1999). Molasses as a feedstock for alcohol production. In: Jacques KA, Lyons TP, Kelsall DR, editors. The Alcohol Textbook. 2nd edition. London, UK: Nottingham University Press. |
|
Oberoi HS, Vadlani PV, Brijwani K, Bhargav VK, Patil RT (2010). Enhanced ethanol production via fermentation of rice straw with hydrolysate-adapted Candida tropicalis ATCC 13803. Process Biochem. 45(8):1299-1306. |
|
Ofoefule AU, Onyeoziri MC, Uzodinma EO (2011). Comparative study of biogas production from chemically-treated powdered and un-powdered rice husks. Envir. Chem. Ecotoxicol. 3(4):75-79. |
|
Parawira W, Tekere M (2011). Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit. Rev. Biotechnol. 1(1):20-31. |
|
Parkash A (2015). Modeling of Ethanol Production from Molasses: A Review. Ind. Chem. 1:2. |
|
Park EY, Naruse K, Kato T (2012). One-pot bioethanol production from cellulose by co-culture of Acremonium cellulolyticus and Saccharomyces cerevisiae. Biotechnol. Biofuels. 5(64):2-11. |
|
Reddy TKS, Pushpa A (2012). Studies on characterizations of agriculture waste (rice husk) for the production of ethanol. J. Environ. Res. Develop. 7(2):1076-1084. |
|
Sadik MW, Halema AA (2014). Production of Ethanol from Molasses and Whey Permeate Using Yeasts and Bacterial Strains. Int. J. Curr. Microbiol. App. Sci. 3(3): 804-818. |
|
Salmon J (1989). Effect of sugar transport inactivation in Saccharomyces cerevisiae on sluggish and stuck enological fermentations. Appl. Environ. Microbiol. 55:953-958. |
|
Service RF (2007). Cellulosic ethanol: biofuel researchers prepare to reap a new harvest. Science 315:1488-1491. |
|
Sharma SK (2000). Saccharifi cation and bioethanol production from sunfl ower stalks and hulls. Ph.D. Thesis, Punjab Agricultural University, Ludhiana, India. |
|
Singh A, Bajar S, Bishnoi NR (2014). Enzymatic hydrolysis of microwave alkali pretreated rice husk for ethanol production by Saccharomyces cerevisiae, Scheffersomyces stipitis and their coculture. Fuel. 116:699-702. |
|
Sopandi T, Wardah A (2015). Sugar consumption in mono and co-culture Saccharomyces cerevisiae and others selected microorganism for bioethanol production from stream rice husk medium. Asian. J. Microbiol. Biotechnol. Environ. Sci. 17(3):89-98. |
|
Srichuwong S, Fujiwara M, Wang X, Seyama T, Shiroma R (2009). Simultaneous saccharification and fermentation (SSF) of very high gravity (VHG) potato mash for the production of ethanol. Biomass Bioenergy. 33(5):890-898. |
|
Taherzadeh MJ, Karimi K (2011). Fermentation inhibitors in ethanol processes and different strategies to reduce their effects. Biofuels. 287-311. |
|
Telew C, Kereh VG, Untu IM, Rembet (2013). The improvement of the rice husk nutritional value with a biotechnology Effective microorganisms (EM4) as an organic feed ingredient. Zootek J. 32(5):1-8. |
|
Tesfaw A, Assefa F (2014). Current Trends in Bioethanol Production by Saccharomyces cerevisiae: Substrate, Inhibitor Reduction, Growth Variables, Coculture, and Immobilization. Rev. Art. Inter. Scho. Res Not. pp. 1-11. |
|
Thomas KC, Hynes SH, Ingledew WM (1996). Effect of nitrogen limitation on synthesis of enzymes in Saccharomyces cerevisiae during fermentation of high concentration of carbohydrates. Biotechnol. Lett. 18:1165-1168. |
|
Tom’as AF, Karag¨oz P, Karakashev D, Angelidaki I (2013). Extreme thermophilic ethanol production from rapeseed straw: using the newly isolated Thermoanaerobacter pentosaceus and combining it with Saccharomyces cerevisiae in a two-step process. Biotechnol. Bioeng. 110(6):1574-1582. |
|
Tyagi RD, Ghose TK (1980). Batch and multistage continuous ethanol fermentation of cellulose hydrolysate and optimum design of fermentor by graphical analysis. Biotechnol. Bioeng. 22(9):1907-1928. |
|
Varela C, Pizarro F, Agosin E (2004). Biomass Content Governs Fermentation Rate in Nitrogen-Deficient Wine Musts. Appl. Environ. Microbiol. 70(6):3392-3400. |
|
Verma G, Nigam P, Singh D, Chaudhary K (2000). Bioconversion of starch to ethanol in a single step process by co-culture of amylolytic yeasts and Saccharomyces cerevisiae. Bioresour. 72:261-266. |
|
Vilanova M, Ugliano M, Varela C, Siebert T, Pretorius IS, Henschke PA (2007). Assimilable nitrogen utilisation and production of volatile and non-volatile compounds in chemically defined medium by Saccharomyces cerevisiae wine yeasts. Appl. Microbiol. Biotechnol. 77(1):145-157. |
|
Walkey C, Black CA. (1965). Soil organic matter in methods of soil analysis. C.A. Black, Ed. Agronomy No 9, Part 2, American Society of Agronomy, Madison, WI. |
|
Wan P, Zhai D, Wang Z, Yang X, Tian S (2012). Ethanol Production from Nondetoxified Dilute-Acid Lignocellulosic Hydrolysate by Cocultures of Saccharomyces cerevisiae Y5 and Pichia stipitis CBS6054. Biotechnol, Res. Inter. pp. 6-11. |
|
Wang XD, Bohlscheid JC, Edwards CG (2003). Fermentative activity and production of volatile compounds by Saccharomyces grown in synthetic grape juice media deficient in assimilable nitrogen and/or panthotenic acid. J. Appl. Microbiol. 94:349-359. |
|
Wang M, Han J, Dunn JB, Cai H, Elgowainy A (2012). Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use. Environ. Res. Lett. 7(4):1-13. |
|
Wright JD (1988). Ethanol from biomass by enzymatic hydrolysis. Chem. Eng. Prog. 84:62-74. |
|
Yue G, Yu J, Zhang X, Tan T (2010). The influence of nitrogen sources on ethanol production by yeast from concentrated sweet sorghum juice. Biomass. Bioenerg. 39:48-52. |
|
Zaldivar J, Nielsen J, Olsson L (2001). Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl. Microbiol. Biotechnol. 56:17-34. |
Copyright © 2025 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0