African Journal of
Microbiology Research

  • Abbreviation: Afr. J. Microbiol. Res.
  • Language: English
  • ISSN: 1996-0808
  • DOI: 10.5897/AJMR
  • Start Year: 2007
  • Published Articles: 5233

Full Length Research Paper

Evaluation of a non-submerged cultivation assay combined to ESEM imaging for analysis of biofilms formed by dairy-associated sporeforming bacteria

Fadila Malek
  • Fadila Malek
  • Department of Biology, SNV-STU faculty, University of Tlemcen, Tlemcen 13000, Algeria.
  • Google Scholar


  •  Received: 09 July 2016
  •  Accepted: 17 August 2016
  •  Published: 28 August 2016

References

Alhede Alhede M, Qvortrup K, Liebrechts R, Høiby N, Givskov M, Bjarnsholt T (2012). Combination of microscopic techniques reveals a comprehensive visual impression of biofilm structure and composition. FEMS Immunol. Med. Microbiol. 65:335-342.
Crossref

 

Anand S, Singh D, Avadhanula M, Marka S (2014). Development and Control of Bacterial Biofilms on Dairy Processing Membranes. Comprehensive Reviews in Food Science and Food Safety 13:18-33.
Crossref

 
 

Austin JW, Bergeron G (1995). Development of bacterial biofilms in dairy processing lines. J. dairy res. 62:509-519.
Crossref

 
 

Bénézech T, Lelièvre C, Membré JM, Viet AF, Faille C (2002). A new test method for in-place cleanability of food processing equipment. J. Food Eng. 54:7-15.
Crossref

 
 

Bergmans L, Moisiadis P, van Meerbeek B, Quirynen M, Lambrechts P (2005). Microscopic observation of bacteria: review highlighting the use of environmental SEM. Int endod J. 38:775-788.
Crossref

 
 

Boles BR, Thoendel M, Singh PK (2005). Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol. Microbiol. 57:1210-1223.
Crossref

 
 

Bremer PJ, Fillery S, McQuillan AJ (2006). Laboratory scale Clean-In Place (CIP) studies on the effectiveness of different caustic and acid wash steps on the removal of dairy biofilms. Int. J. Food Microbiol. 106:254-262.
Crossref

 
 

Burgess SA, Lindsay D, Flint SH (2010). Thermophilic bacilli and their importance in dairy processing. International J. food microbial. 144:215-225.

 
 

Faille C, Bénézech T, Blel W, Ronse A, Ronse G, Clarisse M, Slomianny C (2013). Role of mechanical vs. chemical action in the removal of adherent Bacillus spores during CIP procedures. Food Microbiol. 33:149-157.
Crossref

 
 

Flint SH, Bremer PJ, Brooks JD (1997). Biofilms in dairy manufacturing plant-description, current concerns and methods of control. Biofouling 11:81-97.
Crossref

 
 

Gibson H, Taylor JH, Hall KE, Holah JT (1999). Effectiveness of cleaning techniques used in the food industry in term of removal of bacterial biofilms. J. Appl. Microbial. 87:41-48.
Crossref

 
 

Gopal N, Hill C, Ross P, Beresford TP, Fenelon MA, Cotter PD (2015). The prevalence and control of Bacillus cereus and related spore-forming bacteria in the dairy industry. Front Microbiol. 6:14-18.
Crossref

 
 

Guinebretière MH, Thompson FL, Sorokin A, Normand P, Dawyndt P, Ehling-schulz M, Svensson B, Sanchis V, Nguyen-The C, Heyndrickx M, De Vos P (2008). Ecological diversification in the Bacillus cereus group. Environ. Microbiol.10:851-865.
Crossref

 
 

Gulot E, Georges P, Brun A, Fontaine-Aupart MP, Bellon-Fontaine MN, Briandet R (2002). Heterogeneity of diffusion inside microbial biofilms determined by fluorescence correlation spectroscopy under two-photon excitation. Photochem. photobiol. 75:570-578.
Crossref

 
 

Holling N, Dedi C, Jones CE, Howthorne JA, Hanlon GW, Salvage JP, Patel BA, Barnes LM, Jones BV (2014). Evaluation of environmental scanning electron microscopy for analysis of Proteus mirabilis biofilms in situ on urinary catheters. FEMS Microbiol. Lett. 355(1):20-27.
Crossref

 
 

Kaplan JB (2010). Biofilm Dispersal: Mechanisms, Clinical Implications, and Potential Therapeutic Uses. J. Dent. Res. 89:205-218.
Crossref

 
 

Kirov SM, Webb JS, O'May CY, Reid DW, Woo JKK, Rice SA, Kjelleberg S (2007). Biofilm differentiation and dispersal in mucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Microbiology 153:3264-3274.
Crossref

 
 

Kumari S, Sarkar PK (2014). In vitro model study for biofilm formation by Bacillus cereus in dairy chilling tanks and optimization of clean-in-place (CIP) regimes using response surface methodology. Food Control 36:1153-1158.
Crossref

 
 

Leriche V, Carpentier B (2000). Limitation of adhesion and growth of Listeria monocytogenes on stainless steel surfaces by Staphylococcus sciuri biofilms. J. Appl. Microbiol. 88:594-605.
Crossref

 
 

Lindsay D, Brozel VS, Von Holy A (2006). Biofilm-spore response in Bacillus cereus and Bacillus subtilis during nutrient limitation. J. Food Prot. 69:1168-1172.

 
 

Little B, Wagner P, Ray R, Pope R, Scheetz R (1991). Biofilms: an ESEM evaluation of artifacts during SEM preparation. Journal of industrial microbiology 8:213-222.
Crossref

 
 

Majed R, Faille C, Kallassy M, Gohar M (2016). Bacillus cereus Biofilms—Same, Only Different. Front. Microbiol. 7: 1054.
Crossref

 
 

Malek F, Moussa-Boudjemaa B, Aouar-Metri A, Mabrouk K (2013). Identification and genetic diversity of Bacillus cereus strains isolated from a pasteurized milk processing line in Algeria. Dairy Sci. technol. 93:73-82.
Crossref

 
 

Marchand SJ, De Block VE, De Jonghe A, Coorevits M, Heyndrick X, Herman L (2012). Biofilm Formation in Milk Production and Processing Environments; Influence on Milk Quality and Safety Comprehensive. Rev. Food Sci. Food Safety 11:133-147.
Crossref

 
 

Maris P (1992). Biofilm and disinfection of microorganism carrier-surface method. Sci. des aliments 12:721-728.

 
 

McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S (2011). Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nature Review Microbiology 10:39-50.
Crossref

 
 

Pagedar A, Singh J (2012). Influence of physiological cell stages on biofilm formation by Bacillus cereus of dairy origin. Int. dairy J. 23:30-35.
Crossref

 
 

Parkar SG, Flint SH, Brooks JD (2004). Evaluation of the effect of cleaning regimes on biofilms of thermophilic bacilli on stainless steel. J. Appl. microbiol. 96:110-116.
Crossref

 
 

Parsek MR, Fuqua C (2004). Biofilms 2003: Emerging themes and challenges in studies of surface-associated microbial life. J. bacterial. 186:4427-4440.

 
 

Peng JS, Tsai WC, Chou CC (2001). Surface characteristics of Bacillus cereus and its adhesion to stainless steel. Int. J. food microbial. 65:105-111.

 
 

Purevdorj-Gage B, Costerton WJ, Stoodley P (2005). Phenotypic differentiation and seeding dispersal in non-mucoid Pseudomonas aeruginosa biofilms. Microbiology 151:1569-1576.
Crossref

 
 

Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim Ho (2015). Agents that inhibit bacterial biofilm formation. Future Med. chem. 5: 647-671.
Crossref

 
 

Simmonds P, Mossel BL, Intaraphan T, Deeth HC (2003). Heat resistance of Bacillus spores when adhered to stainless steel and its relationship to spore hydrophobicity. J food protect. 66:2070-2075.

 
 

Simões M, Cleto S, Pereira MO, Vieira MJ (2007). Influence of biofilm composition on the resistance to detachment. Water Sci. Technol. 55:473-80.
Crossref

 
 

Sommer P, Martin-Rouas C, Mettler E (1999). Influence of the adherent population level on biofilm population, structure and resistance to chlorination. Food Microbiol. 16:503-515.
Crossref

 
 

Vilain S, Pretorius JM, Theron J, Brözel VS (2009). DNA as an Adhesin: Bacillus cereus Requires Extracellular DNA To Form Biofilms. Appl. Environ. Microbiol. 75:2861-2868.
Crossref

 
 

Wijman JGE, de Leeuw PPLA, Moezelaar R, Zwietering MH, Abee T (2007). Air liquid interface biofilms of Bacillus cereus: Formation, Sporulation and Dispersion. Appl. Environ. Microbiol. 73:1481-1488.
Crossref

 
 

Zhao Y, Caspers MPM, Metselaar KI, de Boer P, Roeselers G, Moezelaar R, Groot MN, Montijn RC, Abee T, Korta R (2013). Abiotic and microbiotic factors controlling biofilm formation by thermophilic sporeformers. Appl. Environ. Microbiol. 79:5652-5660.
Crossref