African Journal of
Microbiology Research

  • Abbreviation: Afr. J. Microbiol. Res.
  • Language: English
  • ISSN: 1996-0808
  • DOI: 10.5897/AJMR
  • Start Year: 2007
  • Published Articles: 5233

Full Length Research Paper

Isolation, identification and growth conditions of calcite producing bacteria from urea-rich soil

Noor E. S. Abu Tayyem
  • Noor E. S. Abu Tayyem
  • Medical Laboratory Science Department, Islamic University in Gaza, P. O. Box 108, Gaza, Gaza Strip, Palestine.
  • Google Scholar
Khadeja T. M. Elhello
  • Khadeja T. M. Elhello
  • Medical Laboratory Science Department, Islamic University in Gaza, P. O. Box 108, Gaza, Gaza Strip, Palestine.
  • Google Scholar
Abdelraouf A. Elmanama
  • Abdelraouf A. Elmanama
  • Medical Laboratory Science Department, Islamic University in Gaza, P. O. Box 108, Gaza, Gaza Strip, Palestine.
  • Google Scholar


  •  Received: 30 October 2020
  •  Accepted: 30 December 2020
  •  Published: 31 January 2021

References

Achal V, Mukherjee A, Basu P (2009). Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii. Journal of Industrial Microbiology and Biotechnology 36(3):433-438.
Crossref

 

Achal V, Mukherjee A, Reddy MS (2010). Biocalcification by Sporosarcina pasteurii using Corn steep liquor as nutrient source. Industrial Biotechnology 6(3):170-174.
Crossref

 
 

Achal V, Mukherjee A, Reddy MS (2011). Microbial Concrete: Way to Enhance the Durability of Building Structures. Journal of Materials in Civil Engineering 23(6):730-734.
Crossref

 
 

Ali NA, Karkush MO, Al Haideri HH (2020). Isolation and Identification of Local Bactria Produced from Soil-Borne Urease. IOP Conference Series: Materials Science and Engineering 901:012035.
Crossref

 
 

Atkinson MR, Fisher SH (1991). Identification of genes and gene products whose expression is activated during nitrogen-limited growth in Bacillus subtilis. Journal of Bacteriology 173:23-27.
Crossref

 
 

Bhaduri S, Debnath N, Mitra S, Liu Y, Kumar A (2016). Microbiologically induced calcite precipitation mediated by Sporosarcina pasteurii. Journal of visualized experiments 110:1-7.
Crossref

 
 

Burne RA, Chen RE (2001). Bacterial ureases in infectious diseases. Microbes and Infection 2(5):533-542.
Crossref

 
 

Burne RA, Marquis RE (2000). Alkali production by oral bacteria and protection against dental caries. FEMS Microbiology Letters 193(1):1-6.
Crossref

 
 

Castanier S, Metayer-Levrel GL, Perthuisot JP (2000). Bacterial roles in the precipitation of carbonate minerals. Microbial Sediments pp. 32-39.
Crossref

 
 

Chahal N, Rajor A, Siddique R (2011). Calcium carbonate precipitation by different bacterial strains. African Journal of Biotechnology 10(42):8359-8372.
Crossref

 
 

Clive E (1990). Microbiology of extreme environments. First ed. McGraw-Hill, New York.

 
 

Costin S, Ionut S (2017). ABIS online - Advanced bacterial identification Software, an original tool for phenotypic bacterial identification. 

View (Oct. 1, 2020).

 
 

De Belie N, Gruyaert E, Al‐Tabbaa A, Antonaci P, Baera C, Bajare D, Darquennes A, Davies R, Ferrara L, Jefferson T, Litina C, Miljevic B, Otlewska A, Ranogajec J, Roig‐Flores M, Paine K, Lukowski P, Serna P, Tulliani J‐M, Vucetic S, Wang J, Jonkers HM (2018). A review of self-healing concrete for damage management of structures. Advanced Material Interfaces 5(17):1-28.
Crossref

 
 

De Muynck W, De Belie N, Verstraete W (2010a). Microbial carbonate precipitation in construction materials: a review. Ecological Engineering 36(2):118-136.
Crossref

 
 

De Muynck W, Verbeken K, De Belie N, Verstraete W (2010b). Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone. Ecological Engineering 36(2):99-111.
Crossref

 
 

Dhami NK, Reddy MS, Mukherjee A (2013a). Biomineralization of calcium carbonates and their engineered applications: a review. Frontiers in Microbiology 4:1-13.
Crossref

 
 

Dhami NK, Reddy MS, Mukherjee A (2013b). Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. Journal of Microbiology and Biotechnology 23(5):707-714.
Crossref

 
 

Elmanama AA, Alhour MT (2013). Isolation, Characterization and Application of Calcite Producing Bacteria from Urea Rich Soils. Advanced Science and Engineering Research 3(4):388-399.

 
 

Fujita Y, Ferris FG, Lawson RD, Colwell FS, Smith RW (2000). Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiology Journal 17(4):305-318.
Crossref

 
 

Ghosh T, Bhaduri S, Montemagno C, Kumar A (2019). Sporosarcina pasteurii can form nanoscale calcium carbonate crystals on cell surface. PLoS ONE 14(1):1-15.
Crossref

 
 

Hammes F, Boon N, Clement G, de Villiers J, Siciliano SD, Verstraete W (2003). Molecular, biochemical and ecological characterisation of a bio-catalytic calcification reactor. Applied Microbiology and Biotechnology 62(2-3):191-201.
Crossref

 
 

Hammes F, Verstraete W (2002). Key roles of pH and calcium metabolism in microbial carbonate precipitation. Reviews in Environmental Science and Biotechnology 1(1):3-7.
Crossref

 
 

Helmi FM, Elmitwalli HR, Elnagdy SM, El-Hagrassy AF (2016). Calcium carbonate precipitation induced by ureolytic bacteria Bacillus licheniformis. Ecological Engineering 90:367-371.
Crossref

 
 

Krajewska B (2018). Urease-aided calcium carbonate mineralization for engineering applications: a review. Journal of Advanced Research 13:59-67.
Crossref

 
 

Ma L, Pang A, Luo Y, Lu X, Lin F (2020). Beneficial factors for biomineralization by ureolytic bacterium Sporosarcina pasteurii. Microbial Cell Factories 19(1):1-12.
Crossref

 
 

Mobley HLT, Hausinger RP (1989). Microbial Ureases: Significance, regulation and molecular characterisation. Microbiological Review 53:85-108.
Crossref

 
 

Omoregie A, Ngu L, Ong D, Nissom P (2020). Low-Cost Cultivation of Sporosarcina Pasteurii Strain In Food-Grade Yeast Extract Medium For Microbially Induced Carbonate Precipitation (MICP) Application. Biocatalysis and Agricultural Biotechnology 17:247-255.
Crossref

 
 

Peng J, Liu Z (2019). Influence of temperature on microbially induced calcium carbonate precipitation for soil treatment. PLoS ONE 14(6):1-17.
Crossref

 
 

Phang IRK, San Chan Y, Wong KS, Lau SY (2018). Isolation and characterization of urease-producing bacteria from tropical peat. Biocatalysis and Agricultural Biotechnology 13:168-175.
Crossref

 
 

Phillips AJ, Gerlach R, Lauchnor E, Mitchell AC, Cunningham AB, Spangler L (2013). Engineered applications of ureolytic biomineralization: a review. Journal of Bioadhesion and Biofilm Research 29(6):715-733.
Crossref

 
 

Sarda D, Choonia H, Sarode D, Lele S (2009). Biocalcification by Bacillus pasteurii urease: a novel application. Journal of Industrial Microbiology and Biotechnology 36(8):1111-1115.
Crossref

 
 

Sarikaya M (1999). Biomimetics: materials fabrication through biology. Proceedings of the National Academy of Sciences 96(25):14183-14185.
Crossref

 
 

Seifan M, Berenjian A (2018). Application of microbially induced calcium carbonate precipitation in designing bio self-healing concrete. World Journal of Microbiology and Biotechnology 34(11):168.
Crossref

 
 

Seifan M, Berenjian A (2019). Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world. Applied microbiology and biotechnology 103:4693-4708.‏
Crossref

 
 

Seifan M, Samani AK, Berenjian A (2016). Bioconcrete: next generation of self-healing concrete. Applied microbiology and biotechnology 100(6):2591-2602.
Crossref

 
 

Seifan M, Samani AK, Berenjian A (2017). New insights into the role of pH and aeration in the bacterial production of calcium carbonate (CaCO3). Applied Microbiology and Biotechnology 101:3131-3142.
Crossref

 
 

Shashank BS, Sharma S, Sowmya S, Latha RA, Meenu PS, Singh DN (2016). State-of-the-art on geotechnical engineering perspective on bio-mediated processes. Environmental Earth Sciences 75(3):1-16.
Crossref

 
 

Stabnikov V, Jian C, Ivanov V, Li Y (2013). Halotolerant, alkaliphilic urease-producing bacteria from different climate zones and their application for biocementation of sand. World Journal of Microbiology and Biotechnology 29(8):1453-1460.
Crossref

 
 

Stabnikov V, Naeimi M, Ivanov V, Chu J (2011). Formation of water-impermeable crust on sand surface using biocement. Cement and Concrete Research 41(11):1143-1149.
Crossref

 
 

Stocks-Fischer S, Galinat JK, Bang SS (1999). Microbiological precipitation of CaCO3. Soil Biology and Biochemistry 31(11):1563-1571.
Crossref

 
 

Tziviloglou E, Van Tittelboom K, Palin D, Wang J, Sierra-Beltran MG, ErÅŸan YC, De Belie N (2016). Bio-based self-healing concrete: from research to field application. Self-healing Materials 1:345-385.
Crossref

 
 

Van Paassen L (2009). Biogrout- Ground improvement by microbially induced carbonate precipitation. Ph.D. thesis, The Delft University of Technology, Delft, Netherlands.

 
 

Vempada S, Reddy SS, Rao MV, Sasikala C (2011). Strength enhancement of cement mortar using microorganisms-An Experimental Study. International Journal of Earth Sciences and Engineering 4(6):933-936.

 
 

Wang JY, Jonkers HM, Boon N, Belie DB (2017). Bacillus sphaericus LMG 22257 is physiologically suitable for self-healing concrete. Applied Microbiology and Biotechnology 101(12):5101-5114.
Crossref

 
 

Warren LA, Maurice PA, Parmar N, Ferris FG (2001). Microbially mediated calcium carbonate precipitation: implications for interpreting calcite precipitation and for solid-phase capture of inorganic contaminants. Geomicrobiology Journal 18(1):93-115.
Crossref

 
 

Whiffin VS (2004). Microbial CaCO3 precipitation for the production of biocement Ph.D thesis, Murdoch University, Western Australia.

 
 

Whiffin VS, van Paassen L, Harkes M (2007). Microbial carbonate precipitation as a Soil improvement Technique. Geomicrobiology Journal 24(5):417-423.
Crossref

 
 

Wu M, Hu X, Zhang Q, Xue D, Zhao Y (2019). Growth environment optimization for inducing bacterial mineralization and its application in concrete healing. Construction and Building Materials 209:631-643.
Crossref

 
 

Zambare NM, Lauchnor EG, Gerlach R (2019). Controlling the Distribution of Microbially Precipitated Calcium Carbonate in Radial Flow Environments. Environmental Science and Technology 53:5916-5925.
Crossref