African Journal of
Microbiology Research

  • Abbreviation: Afr. J. Microbiol. Res.
  • Language: English
  • ISSN: 1996-0808
  • DOI: 10.5897/AJMR
  • Start Year: 2007
  • Published Articles: 5233

Full Length Research Paper

Molecular identification of biofilm-producing Bacillus species and yeasts isolated from food sources and their interaction with Lysinibacillus louembei strain

Moise Doria Kaya-Ongoto
  • Moise Doria Kaya-Ongoto
  • Laboratory of Cellular and Molecular Biology (BCM), Faculty of Science and Technology, Marien N’gouabi University, BP. 69, Brazzaville, Congo.
  • Google Scholar
Christian Aimé Kayath
  • Christian Aimé Kayath
  • Laboratory of Cellular and Molecular Biology (BCM), Faculty of Science and Technology, Marien N’gouabi University, BP. 69, Brazzaville, Congo.
  • Google Scholar
Nelly Josiane Awah-Lekaka Niebi
  • Nelly Josiane Awah-Lekaka Niebi
  • Laboratory of Cellular and Molecular Biology (BCM), Faculty of Science and Technology, Marien N’gouabi University, BP. 69, Brazzaville, Congo.
  • Google Scholar
Etienne Nguimbi
  • Etienne Nguimbi
  • Laboratory of Cellular and Molecular Biology (BCM), Faculty of Science and Technology, Marien N’gouabi University, BP. 69, Brazzaville, Congo.
  • Google Scholar


  •  Received: 11 October 2023
  •  Accepted: 01 December 2023
  •  Published: 31 December 2023

References

Anjum F, Gautam G, Edgard G, Negi S (2016). Biosurfactant production through Bacillus sp. MTCC 5877 and its multifarious applications in food industry. Bioresource Technology 213:262-269.
Crossref

 

Arnaouteli S, Bamford NC, Stanley-Wall NR, Kovacs AT (2021). Bacillus subtilis biofilm formation and social interactions. Nature Reviews Microbiology 19(9):600-614.
Crossref

 

Arnold AE (2022). Bacterial-fungal interactions: Bacteria take up residence in the house that Fungi built. Current Biology 32(7):R327-R328.
Crossref

 

Bisht B, Verma M, Sharma R, Chauhan PK, Pant K, Kim H, Vlaskin MS, Kumar V (2023). Development of yeast and microalgae consortium biofilm growth system for biofuel production. Heliyon 9(9):e19353.
Crossref

 

Blair KM, Turner L, Winkelman JT, Berg HC, Kearns DB (2008). A molecular clutch disables flagella in the Bacillus subtilis biofilm. Science 320(5883):1636-1638.
Crossref

 

Cheng F, Tang C, Yang H, Yu H, Chen Y, Shen Z (2013). Characterization of a blend-biosurfactant of glycolipid and lipopeptide produced by Bacillus subtilis TU2 isolated from underground oil- extraction wastewater. Journal of Microbiology and Biotechnology 23(3):390-396.
Crossref

 

Christensen GD, Simpson WA, Bisno AL, Beachey EH (1982). Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infection and Immunity 37(1):318-326.
Crossref

 

Dai J, Dong A, Xiong G, Liu Y, Hossain MS, Liu S, Gao N, Li S, Wang J, Qiu D (2020). Production of Highly Active Extracellular Amylase and Cellulase From Bacillus subtilis ZIM3 and a Recombinant Strain With a Potential Application in Tobacco Fermentation. Frontiers in Microbiology 11:1539.
Crossref

 

David V, Terrat S, Herzine K, Claisse O, Rousseaux S, Tourdot-Marechal R, Masneuf-Pomarede I, Ranjard L, Alexandre H (2014). High?throughput sequencing of amplicons for monitoring yeast biodiversity in must and during alcoholic fermentation. Journal of Industrial Microbiology and Biotechnology 41(5):811-821.
Crossref

 

de Souza Freitas F, Coelho de Assis Lage T, Ayupe BAL, de Paula Siqueira T, de Barros M, Totola MR (2020). Bacillus subtilis TR47II as a source of bioactive lipopeptides against Gram-negative pathogens causing nosocomial infections. 3Biotech 10(11):474.
Crossref

 

Diaz-Munoz C, Verce M, De Vuyst L, Weckx S (2022). Phylogenomics of a Saccharomyces cerevisiae cocoa strain reveals adaptation to a West African fermented food population. iScience 25(11):105309.
Crossref

 

Dymond JS (2013). Preparation of genomic DNA from Saccharomyces cerevisiae. Methods in Enzymology 529:153-160.
Crossref

 

Elenga-Wilson PS, Kayath CA, Mokemiabeka NS, Nzaou SAE, Nguimbi E, Ahombo G (2021). Profiling of Indigenous Biosurfactant-Producing Bacillus Isolates in the Bioremediation of Soil Contaminated by Petroleum Products and Olive Oil. International Journal of Microbiology 9565930.
Crossref

 

Elzeini HM, Ali A, Nasr NF, Hassan M, Hassan AAM, Elenany YE (2021). Probiotic capability of novel lactic acid bacteria isolated from worker honey bees gut microbiota. FEMS Microbiology Letters 368(6).
Crossref

 

Eras-Munoz E, Farre A, Sanchez A, Font X, Gea T (2022). Microbial biosurfactants: a review of recent environmental applications. Bioengineered 13(5):12365-12391.
Crossref

 

Fernandez de Dios MA, del Campo AG, Fernandez FJ, Rodrigo M, Pazos M, Sanroman MA (2013). Bacterial-fungal interactions enhance power generation in microbial fuel cells and drive dye decolourisation by an ex situ and in situ electro-Fenton process. Bioresource Technology 148:39-46.
Crossref

 

Fossi BT, Tavea F, Fontem LA, Ndjouenkeu R, Wanji S (2014). Microbial interactions for enhancement of alpha-amylase production by Bacillus amyloliquefaciens 04BBA15 and Lactobacillus fermentum 04BBA19. Biotechnology Reports 4:99-106.
Crossref

 

Freeman DJ, Falkiner FR, Keane CT (1989). New method for detecting slime production by coagulase negative staphylococci. Journal of Clinical Pathology 42(8):872-874.
Crossref

 

Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A (2011). Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiology and Molecular Biology 75(4):583-609.
Crossref

 

Guo L, Xu WL, Li CD, Ya M, Guo YS, Qian JP, Zhu JJ (2020). Production technology, nutritional, and microbiological investigation of traditionally fermented mare milk (Chigee) from Xilin Gol in China. Food Science & Nutrition 8(1):257-264.
Crossref

 

Irnov I, Winkler WC (2010). A regulatory RNA required for antitermination of biofilm and capsular polysaccharide operons in Bacillales. Molecular Microbiology 76(3):559-575.
Crossref

 

Jezierska S, Claus S, Van Bogaert I (2018). Yeast glycolipid biosurfactants. FEBS Letters 592(8):1312-1329.
Crossref

 

Jumpathong W, Intra B, Euanorasetr J, Wanapaisan P (2022). Biosurfactant-Producing Bacillus velezensis PW192 as an Anti-Fungal Biocontrol Agent against Colletotrichum gloeosporioides and Colletotrichum musae. Microorganisms 10(5).
Crossref

 

Kaya-Ongoto MD, Kayath CA, Nguimbi E, Lebonguy AA, Nzaou SAE, Elenga Wilson PS, Ahombo G (2019). Genetic Clearness Novel Strategy of Group I Bacillus Species Isolated from Fermented Food and Beverages by Using Fibrinolytic Enzyme Gene Encoding a Serine-Like Enzyme. Journal of Nucleic Acids 5484896.
Crossref

 

Kaya-Ongoto MD, Kayath CA, Vouidibio Mbozo AB, Mobandolaka Mitoko G, Elenga Wilson SP, Kinouani Kinavouidi DJ, Nguimbi E (2020). Prime Enzymatic Exocellular Background of Lysinibacillus louembei. Advances in Microbiology 10(3).
Crossref

 

Kayath CA, Ibala Zamba A, Mokemiabeka SN, Opa-Iloy M, Elenga Wilson PS, Kaya-Ongoto MD, Mouellet Maboulou RJ, Nguimbi E (2020). Synergic Involvements of Microorganisms in the Biomedical Increase of Polyphenols and Flavonoids during the Fermentation of Ginger Juice. International Journal of Microbiology 8417693.
Crossref

 

Kimura K, Yokoyama S (2019). Trends in the application of Bacillus in fermented foods. Current Opinion in Biotechnology 56:36-42.
Crossref

 

Konishi M, Nagahama T, Fukuoka T, Morita T, Imura T, Kitamoto D, Hatada Y (2011). Yeast extract stimulates production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma hubeiensis SY62. Journal of Bioscience and Bioengineering 111(6):702-705.
Crossref

 

Marchut-Mikolajczyk O, Drozdzynski P, Polewczyk A, Smulek W, Antczak T (2021). Biosurfactant from endophytic Bacillus pumilus 2A: physicochemical characterization, production and optimization and potential for plant growth promotion. Microbial Cell Factories 20(1):40.
Crossref

 

Meng X, Wu Q, Wang L, Wang D, Chen L, Xu Y (2015). Improving flavor metabolism of Saccharomyces cerevisiae by mixed culture with Bacillus licheniformis for Chinese Maotai-flavor liquor making. Journal of Industrial Microbiology and Biotechnology 42(12):1601-1608.
Crossref

 

Mgbodile FC, Nwagu TNT (2023). Probiotic therapy, African fermented foods and food-derived bioactive peptides in the management of SARS-CoV-2 cases and other viral infections. Biotechnol Rep (Amst) 38:e00795.
Crossref

 

Mnif I, Besbes S, Ellouze-Ghorbel R, Ellouze-Chaabouni S, Ghribi D (2013). Improvement of bread dough quality by Bacillus subtilis SPB1 biosurfactant addition: optimized extraction using response surface methodology. Journal of the Science of Food and Agriculture 93(12):3055-3064.
Crossref

 

Ouoba LI, Parkouda C, Diawara B, Scotti C, Varnam AH (2008). Identification of Bacillus spp. from Bikalga, fermented seeds of Hibiscus sabdariffa: phenotypic and genotypic characterization. Journal of Applied Microbiology 104(1):122-131.

 

Ouoba LII, Vouidibio Mbozo AB, Thorsen L, Anyogu A, Nielsen DS, Kobawila SC, Sutherland JP (2015). Lysinibacillus louembei sp. nov., a spore-forming bacterium isolated from Ntoba Mbodi, alkaline fermented leaves of cassava from the Republic of the Congo. International Journal of Systematic and Evolutionary Microbiology 65(11):4256-4262.
Crossref

 

Pandit S, Fazilati M, Gaska K, Derouiche A, Nypelo T, Mijakovic I, Kadar R (2020). The Exo-Polysaccharide Component of Extracellular Matrix is Essential for the Viscoelastic Properties of Bacillus subtilis Biofilms. International Journal of Molecular Sciences 21(18).
Crossref

 

Parkouda C, Nielsen DS, Azokpota P, Ouoba LI, Amoa-Awua WK, Thorsen L, Hounhouigan JD, Jensen JS, Tano-Debrah K, Diawara B, Jakobsen M (2009). The microbiology of alkaline-fermentation of indigenous seeds used as food condiments in Africa and Asia. Critical Reviews in Microbiology 35(2):139-156.
Crossref

 

Qin Y, Angelini LL, Chai Y (2022). Bacillus subtilis Cell Differentiation, Biofilm Formation and Environmental Prevalence. Microorganisms 10(6).
Crossref

 

Rajesh R, Gummadi SN (2022). Alpha-Amylase and cellulase production by novel halotolerant Bacillus sp.PM06 isolated from sugarcane pressmud. Biotechnol Appl Biochem 69(1):149-159.
Crossref

 

Rani M, Weadge JT, Jabaji S (2020). Isolation and Characterization of Biosurfactant-Producing Bacteria From Oil Well Batteries With Antimicrobial Activities Against Food-Borne and Plant Pathogens. Frontiers in Microbiology 11:64.
Crossref

 

Schroeckh V, Scherlach K, Nutzmann HW, Shelest E, Schmidt-Heck W, Schuemann J, Martin K, Hertweck C, Brakhage AA (2009). Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proceedings of the National Academy of Sciences 106(34):14558-14563.
Crossref

 

Sieuwerts S, de Bok FA, Hugenholtz J, van Hylckama Vlieg JE (2008). Unraveling microbial interactions in food fermentations: from classical to genomics approaches. Applied and Environmental Microbiology 74(16):4997-5007.
Crossref

 

Stancu MM (2020). Biosurfactant production by a Bacillus megaterium strain. Open Life Sciences 15(1):629-637.
Crossref

 

Wu B, Xiu J, Yu L, Huang L, Yi L, Ma Y (2022). Biosurfactant production by Bacillus subtilis SL and its potential for enhanced oil recovery in low permeability reservoirs. Scientific Reports 12(1):7785.
Crossref

 

Xu H, Zou Y, Lee HY, Ahn J (2010). Effect of NaCl on the biofilm formation by foodborne pathogens. Journal of Food Science 75(9):M580-585.
Crossref

 

Zara G, Budroni M, Mannazzu I, Fancello F, Zara S (2020). Yeast biofilm in food realms: occurrence and control. World Journal of Microbiology and Biotechnology 36(9):134.
Crossref

 

Zhou Y, Wang H, Xu S, Liu K, Qi H, Wang M, Chen X, Berg G, Ma Z, Cernava T, Chen Y (2022). Bacterial-fungal interactions under agricultural settings: from physical to chemical interactions. Stress Biology 2(1):22.
Crossref