African Journal of
Pharmacy and Pharmacology

  • Abbreviation: Afr. J. Pharm. Pharmacol.
  • Language: English
  • ISSN: 1996-0816
  • DOI: 10.5897/AJPP
  • Start Year: 2007
  • Published Articles: 2285

Review

The effect of saffron (Crocus sativus L.) and its ingredients on the management of diabetes mellitus and dislipidemia

Tahereh Farkhondeh
  • Tahereh Farkhondeh
  • Department of Agriculture, Payam Noor University, P. O. Box 19395-4697, Tehran, Iran.
  • Google Scholar
Saeed Samarghandian*
  • Saeed Samarghandian*
  • Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
  • Google Scholar


  •  Received: 05 December 2013
  •  Accepted: 29 April 2014
  •  Published: 29 May 2014

References

Abdullaev FI (1993). Biological effects of saffron. BioFactors 4: 83-86.
PubMed
 
Abdullaev FI, Espinosa-Aguirre JJ (2004). Biomedical properties of saffron and its potential use in cancer therapy and chemoprevention trials. Cancer Detect. Prev. 28:426-432.
Crossref
 
Abdullaev F, Ortega CH, Miranda PR (2007). HPLC quantification of major active components from 11 different saffron (Crocus sativus L.) sources. Food Chem. 100:1126-1131.
Crossref
 
Al-Mustafa AH, Al-Thunibat OY (2008). Antioxidant activity of some Jordanian medicinal plants used traditionally for treatment of diabetes. Pak. J. Biol. Sci. 11:351-358.
Crossref
 
Alonso GL, Salinas MR, Garijo J, Sanchez-Fernadez M (2001). Composition of crocins and picrocrocin from Spanish saffron (Crocus sativus L.). J. Food Qual. 24:219 233.
Crossref
 
Assimopoulou AN, Sinakos Z, Papageorgiou VP (2005). Radical scavenging activity of Crocus sativus L. extract and its bioactive constituents. Phytother. Res. 19:997-1000.
Crossref
 
Bhalodia YS, Sheth NR, Vaghasiya JD, Jivani NP (2010). Hyperlipidemia enhanced oxidative stress and inflammatory. Int. J. Pharmacol. 6:25-30.
Crossref
 
Bharti S, Golechha M, Kumari S, Siddiqui KM, Arya DS (2012). Akt/GSK-3b/eNOS phosphorylation arbitrates safranal- induced myocardial protection against ischemia-reperfusion injury in rats. Eur. J. Nutr. 51:719-727.
Crossref
 
Boynes JW (1991). Role of oxidative stress in development of complication in diabetes. Diabetes 40:405-412.
Crossref
 
Chaturvedi N (2007). The burden of diabetes and its complications: Trends and implications for intervention. Diabetes Res. Clin. Pract. 76:S3-S12.
Crossref
 
Dey L, Attele AS, Yuan CS (2002). Alternative therapies for type 2 diabetes. Altern. Med. Rev. 7:45-58.
PubMed
 
Eddouk M, Maghrani M, Lemhadri A, Ouahidi ML, Jouad H (2002). Ethnopharmacological survey of medicinal plants used for the treatment of diabetes mellitus, hypertension and cardiac disease in the Sourtheast region of Morocco (Tafilalet). J. Ethnopharmacol. 82:97-103.
Crossref
 
Farahmand SK, Samini F, Samini M, Samarghandian S (2013). Safranal ameliorates antioxidant enzymes and suppresses lipid peroxidation and nitric oxide formation in aged male rat liver. Biogerontology 14:63-71.
Crossref
 
Elgazar FA, Rezq AA, Bukhari MH (2013). Anti-Hyperglycemic Effect of Saffron Extract in Alloxan-Induced Diabetic Rats. Eur. J. Biol. Sci. 5:14-22.
 
Gilbert MP, Pratley RE (2009). Efficacy and safety of incretin-based therapies in patients with type 2 diabetes mellitus. Eur. J. Intern. Med. 20:S309 - S318.
Crossref
 
Gregory MJ, Menary RC, Davies NW (2005). Effect of drying temperature and air flow on the production and retention of se-condary metabolites in saffron. J. Agric. Food Chem. 53:5969-5975.
Crossref
 
Halataei BA, Khosravi M, Arbabian S, Sahraei H, Golmanesh L, Zardooz H, Jalili C, Ghoshooni H (2011). Saffron (Crocus sativus) aqueous extract and its constituent crocin reduce stress-induced anorexia in mice. Phytother. Res. 25:1833-1838.
Crossref
 
Hariri AT, Moallem SA, Mahmoudi M, Memar B, Hosseinzadeh H (2010). Sub-acute effects of diazinon on biochemical indices and specific biomarkers in rats: protective effects of crocin and safranal. Food Chem. Toxicol. 48:2803-2808.
Crossref
 
He SY, Qian ZY, Tang FT, Wen N, Xu GL, Sheng L (2005). Effect of crocin on experimental atherosclerosis in quails and its mechanisms. Life Sci. 77:907-921.
Crossref
 
Hosseinpour CS, Adibah AB, Roji SM, Taghizadeh E, Salehnezhad S (2010). Impact of saffron as an anti-cancer and anti-tumor herb. Afr. J. Pharm. Pharmacol. 4:834-840.
 
Hosseinzadeh H, Sadeghnia HR (2005). Safranal, a constituentof Crocus sativus (saffron), attenuated cerebral ischemia induced oxidative damage in rat hippocampus. J. Pharm. Pharm. Sci. 8:394–399.
PubMed
 
Hu X, Sato J, Oshida Y, Xu M, Bajotto G, Sato Y (2003). Effect of Gosha-jinki-gan (Chinese herbal medicine Niu-Che-Sen-Oi-Wan) on insulin resistance in streptozotocin-induced diabetic rats. Diabetes Res. Clin. Pract. 59:103-111.
Crossref
 
Johansen JS, Harris AK, Rychly DJ, Ergul A (2005). Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc. Diabetol. 4:5.
Crossref
 
Jorns A, Tiedge M, Lenzen S, Munday R (1999). Effect of superoxide dismutase, catalase, chelating agents and free radical scavengers on the toxicity of alloxan to isolated pancreatic islets in vitro. Free Radic. Biol. Med. 26:1300-1304.
Crossref
 
Kamalipour M, Akhondzadeh S (2011). Cardiovascular Effects of Saffron: An Evidence-Based Revew. J. Tehran Univ. Heart Center 2:59-61.
 
Kanakis CD, Tarantilis PA, Tajmir-Riahi HA, Polissiou MG (2007). Crocetin, dimethylcrocetin and safranal bind human serum albumin: stability and antioxidative properties. J. Agric. Food Chem. 55:970-977.
Crossref
 
Kang C, Lee H, Jung ES, Seyedian R, Jo M, Kim J, Kim JS, Kim E (2012). Saffron (Crocus sativus L.) increases glucose uptake and insulin sensitivity in muscle cells via multipathway mechanisms. Food Chem. 135:2350-2358.
Crossref
 
Kianbakht S, Hajiaghaee R (2011). Anti-hyperglycemic effects of saffron and its active constituents, crocin and safranal, in alloxan-induced diabetic rats. J. Med. Plants 10:39-43.
 
Kianbakht S, Mozaffari K (2009). Effects of saffron and its Active Constituents, Crocin and Safranal, on Prevention of Indomethacin Induced Gastric Ulcers in Diabetic and Nondiabetic Rats. J. Med. Plants 8:30-38.
 
Kurechi T, Kikugawa K, Kato T, Numasato T (1980). Studies on the antioxidants.13. Hydrogen donating capability of antioxidants to 2,2-diphenyl-1-picrylhydrazyl. Chem. Pharm. Bull. 28:2089-2093.
Crossref
 
Lage M, Cantrell C (2009). Quantification of saffron (Crocus sativus L.) metabolites crocins, picrocrocin and safranal for quality determination of the spice grown under different environmental Moroccan conditions. Sci. Hortic. 121:366-373.
Crossref
 
Logani MK, Davis RE (1979). Lipid peroxidation in biologic effects and antioxidants: a review. Lipids 15:485-493.
Crossref
 
Maghrani M, Michel JB, Eddouks M (2005). Hypoglycemic activity of Retama raetam in rats. Phytoter. Res. 19:125-128.
Crossref
 
Maritim AC, Sanders RA, Watkins JB (2003). Diabetes, oxidative stress, and antioxidants: A review. J. Biochem. Mol. Toxicol. 17:24-38.
Crossref
 
Mohajeri D, Mousavi GH, Doustar Y (2009). Antihyperglycemic and Pancrease-Protective Effects of Croucus sativus L. (saffron) Stigma ethanolic extract on rats with alloxan-induced diabetes. J. Biol. Sci. 9:302-310.
Crossref
 
Neelesh M, Sanjay J, Sampa M (2010). Antidiabetic potential of medicinal plants. Acta Pol. Pharm. 67:113-118.
 
Nair SC, Kurumboor SK, Hasegawa JH (1995). Saffron chemopreven-tion in biology and medicine: a review. Cancer Biother. 10:257-264.
Crossref
 
Papandreou MA, Tsachaki M, Efthimiopoulos S, Cordopatis P, Lamari FN, Margarity M (2011). Memory enhancing effects of saffron in aged mice are correlated with antioxidant protection. Behav. Brain Res. 219:197-204.
Crossref
 
Pitsikas N, Zisimopoulou S, Tarantilis PA, Kanakis CD, Polissiou MG, Sakellaridis N (2007). Effects of the active constituents of Crocus sativus L., crocins on recognition and spatial rat's memory. Behav. Brain Res. 183:141-146.
Crossref
 
Premkumar K, Abraham SK, Santhiya ST, Ramesh A (2003). Protective effects of saffron (Crocus sativus Linn.) on genotoxins induced oxidative stress in Swiss albino mice. Phytother. Res. 17:614-617.
Crossref
 
Raghuvanshi R, Aiki K, Pushpa B, Aparna M, Misra MK (2007). Xanthine Oxidase as a marker of Myocardial Infarction. Indian J. Clin. Biochem. 22:90-92.
Crossref
 
Rahbani M, Mohajeri D, Rezaie A, Doustar Y, Nazeri M (2011). Attenuation of oxidative stress of hepatic tissue by ethanolic extract of saffron (dried stigmas of Crocus sativus L.) in streptozotocin (STZ) - induced diabetic rats. Afr. J. Pharm. Pharmacol. 5:2166-2173.
 
Rahimi R, Nikfar S, Larijani B, Abdollahi M (2005). A review on the role of antioxidants in the management of diabaetes and its complications. Biomed. Pharmacother, 59:365-373.
Crossref
 
Rajaei Z, Hadjzadeh MA, Nemati H, Hosseini M, Ahmadi M, Shafiee S (2013). Antihyperglycemic and antioxidant activity of crocin in streptozotocin-induced diabetic rats. J. Med. Food. 16:206-210.
Crossref
 
Robertson R, Zhou H, Zhang T, Harmon JS (2007). Chronic oxidative stress as a mechanism for glucose toxicity of the beta cell in type 2 diabetes. Cell Biochem. Biophy. 48:139-146.
Crossref
 
Sabu MC, Kuttan R (2002). Anti-diabetic activity of medicinal plants and its relationship with their antioxidant property. J. Ethnopharmacol. 81:155-160.
Crossref
 
Samarghandian S, Borji A, Delkhosh MB, Samin F (2013). Safranal treatment improves hyperglycemia, hyperlipidemia and oxidative stress in streptozotocin-induced diabetic rats. J. Pharm. Pharm. Sci. 16:352-362.
PubMed
 
Samarghandian S, Boskabady MH, Davoodi S (2010). Use of in vitro assays to assess the potential antiproliferative and cytotoxic effects of saffron (Crocus sativus L.) in human 6 lung cancer cell line. Pharmacogn. Mag. 6:309–314
Crossref
 
Samarghandian S, Hadjzadeh MA, Amin Nya F, Davoodi S (2012). Antihyperglycemic and antihyperlipidemic effects of guar gum on streptozotocin-induced diabetes in male rats. Pharmacogn. Mag. 8:65-72.
Crossref
 
Samarghandian S, Shabestari MM (2013). DNA fragmentation and apoptosis induced by safranal in human prostate cancer cell line. Indian J. Urol. 29:177-183.
Crossref
 
Samarghandian S, Tavakkol Afshari J, Davoodi S (2011). Suppression of pulmonary tumor Promotion and induction of apoptosis by Crocus sativus L. Extraction. Appl. Biochem. Biotechnol. 164:238-247.
Crossref
 
Samini F, Samarghandian S, Borji A, Mohammadi G, Bakaian M (2013). Curcumin pretreatment attenuates brain lesion size and improves neurological function following traumatic brain injury in the rat. Pharmacol. Biochem. Behav. 110:238-244.
Crossref
 
Schmidt M, Betti G, Hensel A (2007). Saffron in phytotherapy: pharmacology and clinical uses. Wien Med. Wochenschr. 157:315-319.
Crossref
 
Schroeter HC, Boyd JPE, Spencer RJ, Williams EC, Rice-Evans C (2002). MAPK signaling in neurodegeneration: influences of flavonoids and of nitric oxide. Neurobiol. Aging 23:861-880.
Crossref
 
Sharma S, Nasir A. Parbhu K, Mursy B, Dev G (2003). Hypoglycemic and hypolipidemic effect of etanolic extract of seeds in alloxan induced diabetic rabbits. J. Ethnopharmacol. 85:201.
Crossref
 
Sheng L, Qian Z, Zheng S, Xi L (2006). Mechanism of hypolipidemic effect of crocin in rats: crocin inhibits pancreatic lipase. Eur. J. Pharmacol. 543:116-122.
Crossref
 
Sheng L, Qian Z, Shi Y, Yang L, Xi L, Zhao B, Xu X, Ji H (2008). Crocetin improves the insulin resistance induced by high-fat diet in rats. Br. J. Pharmacol. 154:1016-1024.
Crossref
 
Shirali S, Zahra Bathaie S, Nakhjavani M (2013). Effect of crocin on the insulin resistance and lipid profile of streptozotocin-induced diabetic rats. Phytother. Res. 27:1042-1047.
Crossref
 
Tawaha K, Alali FQ, Gharaibeh M, Mohammad M, El-Elimat T (2007). Antioxidant activity and total phenolic content of selected Jordanian plant species. Food Chem. 104:1372-1378.
Crossref
 
Xi L, Qian Z, Shen X, Wen N, Zhang Y (2005). Crocetin prevents dexamethasone-induced insulin resistance in rats. Planta Med. 71:917-922.
Crossref
 
Xi L, Qian Z, Xu G, Zheng S, Sun S, Wen N, Sheng L, Shi Y, Zhang Y (2007a). Beneficial impact of crocetin, a carotenoid from saffron on insulin sensitivity in fructose-fed rats. J. Nutr. Biochem. 18:64-72.
Crossref
 
Xi L, Qian Z, Xu G, Zhou C, Sun S (2007b). Crocetin attenuates palmitate-induced insulin insensitivity and disordered tumor necrosis factor and adiponectin expression in rat adipocytes. Br. J. Pharmacol. 151:610-617.
Crossref
 
Xiang M, Qian ZY, Zhou CH, Liu J, Li WN (2006a). Crocetin inhibits leukocyte adherence to vascular endothelial cells induced by AGEs. J. Ethnopharmacol. 107:25-31.
Crossref
 
Xiang M, Yang M, Zhou C, Liu J, Li W, Qian Z (2006b). Crocetin prevents AGEs-induced vascular endothelial cell apoptosis. Pharmacol. Res. 54: 268-274.
Crossref
 
Xu GL, Yu SQ, Gong ZN, Zhang SQ (2005). Study of the effect of crocin on rat experimental hyperlipidemia and the underlying mechanisms. Zhongguo Zhong Yao Za Zhi. 30:369-372.
PubMed
 
Yang YC, Hsu H, Hwang JH, Hong SJ (2003). Enhancement of glucose uptake in 3T3-L1 adipocytes by Toonasinensis leaf extract. J. Med. Sci. 19:327-333.
 
Youn JY, Park HY, Cho KH (2004). Anti hyperglycemic activity of Commelina Communis L. inhibition of a-glucosidase. Diabetes Res. Clin. Pract. 66:S149-S155.
Crossref
 
Zarinkamar F, Tajik S, Soleimanpour S (2011). Effects of altitude on anatomy and concentration of crocin, picrocrocin and safranal in Crocus sativus L. AJCS 5:831-838.
 
Zheng YQ, Liu JX, Wang JN, Xu L (2007). Effects of crocin on reperfusion-induced oxida- tive/nitrative injury to cerebral microvessels after global cerebral ischemia. Brain Res. 1138:86-94.
Crossref
 
Zhang Y, Shoyama Y, Sugiura M, Saito H (1994). Effects of Crocus sativus L. on the ethanol-induced impairment of passive avoidance performances in mice. Biol. Pharm. Bull. 17:217-221.
Crossref