Journal of
Microbiology and Antimicrobials

  • Abbreviation: J. Microbiol. Antimicrob.
  • Language: English
  • ISSN: 2141-2308
  • DOI: 10.5897/JMA
  • Start Year: 2009
  • Published Articles: 166

Full Length Research Paper

The functional stability, bioactivity and safety profile of synthetic antimicrobial peptide SAAP-148

Gabrielle S. Dijksteel
  • Gabrielle S. Dijksteel
  • Association of Dutch Burn Centers, The Netherlands.
  • Google Scholar
Magda M. W. Ulrich
  • Magda M. W. Ulrich
  • Association of Dutch Burn Centers, The Netherlands.
  • Google Scholar
Peter H. Nibbering
  • Peter H. Nibbering
  • Department of Infectious Diseases, Leiden University Medical Center, The Netherlands.
  • Google Scholar
Robert A. Cordfunke
  • Robert A. Cordfunke
  • Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, The Netherlands.
  • Google Scholar
Jan W. Drijfhout
  • Jan W. Drijfhout
  • Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, The Netherlands.
  • Google Scholar
Esther Middelkoop
  • Esther Middelkoop
  • Association of Dutch Burn Centers, The Netherlands.
  • Google Scholar
Bouke K. H. L. Boekema
  • Bouke K. H. L. Boekema
  • Association of Dutch Burn Centers, The Netherlands.
  • Google Scholar


  •  Received: 20 August 2020
  •  Published: 31 August 2020

References

Atiyeh BS, Costagliola M, Hayek SN, Dibo SA (2007). Effect of silver on burn wound infection control and healing: Review of the Literature Burns 33(2):139-148.
Crossref

 

Bacalum M, Radu M (2015). Cationic antimicrobial peptides cytotoxicity on mammalian cells: An analysis using therapeutic index integrative concept. International Journal of Peptide Research and Therapeutics 21(1):47-55.
Crossref

 
 

Beisswenger C, Bals R (2005). Functions of antimicrobial peptides in host defense and immunity. Current protein & peptide science 6(3):255-264.
Crossref

 
 

Björn C, Mahlapuu M, Mattsby-Baltzer I, Håkansson J (2016). Anti-infective efficacy of the lactoferrin-derived antimicrobial peptide HLR1r. Peptides 81:21-28.
Crossref

 
 

Van den Bogaerdt AJ, Van Zuijlen PPM, Van Galen M, Lamme EN, Middelkoop E (2002). The suitability of cells from different tissues for use in tissue-engineered skin substitutes. Archives of Dermatological Research 294(3):135-142.
Crossref

 
 

de Breij A, Riool M, Cordfunke RA, Malanovic N, de Boer L, Koning RI, Ravensbergen E, Franken M, van der Heijde T, Boekema BK, Kwakman PHS, Kamp N, El Ghalbzouri A, Lohner K, Zaat SAJ, Drijfhout JW, Nibbering PH (2018). The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Science Translational Medicine 10(423):eaan4044.

 
 

Chu HL, Yu HY, Yip BS, Chih YH, Liang CW, Cheng HT, Cheng JW (2013). Boosting salt resistance of short antimicrobial peptides. Antimicrobial Agents and Chemotherapy 57(8):4050-4052.
Crossref

 
 

Coolen NA, Verkerk M, Reijnen L, Vlig M, van den Bogaerdt AJ, Breetveld M, Gibbs S, Middelkoop E, Ulrich MMW (2007). Culture of keratinocytes for transplantation without the need of feeder layer cells. Cell transplantation 16(6):649-661.
Crossref

 
 

Coolen NA, Vlig M, Van Den Bogaerdt AJ, Middelkoop E, Ulrich MMW (2008). Development of an in vitro burn wound model. Wound Repair and Regeneration 14(4):559-567.
Crossref

 
 

Dijksteel GS, Ulrich MMW, Vlig M, Nibbering PH, Cordfunke RA, Drijfhout JW, Middelkoop E, Boekema BKHL (2019a). Potential factors contributing to the poor antimicrobial efficacy of SAAP-148 in a rat wound infection model. Annals of Clinical Microbiology and Antimicrobials 18(1):38.
Crossref

 
 

Dijksteel GS, Nibbering PH, Ulrich MMW, Middelkoop E, Boekema BKHL (2019b). SPS-neutralization in tissue samples for efficacy testing of antimicrobial peptides. BMC Infectious Diseases 19(1):1093.
Crossref

 
 

Dijksteel GS, Ulrich MMW, Vlig M, Sobota A, Middelkoop E, Boekema BKHL (2020). Safety and bactericidal efficacy of cold atmospheric plasma generated by a flexible surface Dielectric Barrier Discharge device against Pseudomonas aeruginosa in vitro and in vivo. Annals of Clinical Microbiology and Antimicrobials 19(1):37.
Crossref

 
 

Gentilucci L, De Marco R, Cerisoli L (2010). Chemical modifications designed to improve peptide stability: Incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. Current Pharmaceutical Design 16(28):3185-3203.
Crossref

 
 

Glik J, Kawecki M, Gaździk T, Nowak M (2012). The impact of the types of microorganisms isolated from blood and wounds on the results of treatment in burn patients with sepsis. Polish Journal of Surgery 84(1):6-16.
Crossref

 
 

Gordon YJ, Romanowski EG, McDermott AM (2005). A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Current Eye Research 30(7):505-515.
Crossref

 
 

Gould PW, Villiger JW (1986). Clinical and bacteriological efficacy of mupirocin (Bactroban): a new topical antibiotic. The New Zealand Medical Journal 99(805):516.

 
 

Haisma EM, De Breij A, Chan H, Van Dissel JT, Drijfhout JW, Hiemstra PS, El Ghalbzouri A, Nibbering PH (2014). LL-37-derived peptides eradicate multidrug-resistant Staphylococcus aureus from thermally wounded human skin equivalents. Antimicrobial Agents and Chemotherapy 58(8):4411-4419.
Crossref

 
 

Haisma EM, Göblyös A, Ravensbergen B, Adriaans AE, Cordfunke RA, Schrumpf J, Limpens, RWAL, Schimmel KJM, den Hartigh J, Hiemstra PS, Drijfhout JW, El Ghalbzouri A, Nibbering PH (2016). Antimicrobial peptide P60.4Ac-containing creams and gel for eradication of methicillin-resistant Staphylococcus aureus from cultured skin and airway epithelial surfaces. Antimicrobial Agents and Chemotherapy 60(7):4063-4072.
Crossref

 
 

Huang H N, Pan CY, Chan YL, Chen JY, Wu CJ (2014). Use of the antimicrobial peptide pardaxin (GE33) to protect against methicillin-resistant Staphylococcus aureus infection in mice with skin injuries. Antimicrobial Agents and Chemotherapy 58(3):1538-1545.
Crossref

 
 

Jiang Z, Vasil AI, Hale JD, Hancock REW, Vasil ML, Hodges RS (2008). Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α-helical cationic antimicrobial peptides. Biopolymers - Peptide Science Section 90(3):369-383.
Crossref

 
 

Karim AS, Yan A, Ocotl E, Bennett DD, Wang Z, Kendziorski C, Gibson ALF (2019). Discordance between histologic and visual assessment of tissue viability in excised burn wound tissue. Wound Repair and Regeneration 27(2):150-161.
Crossref

 
 

Kumar P, Kizhakkedathu JN, Straus SK (2018). Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 8(1):4.
Crossref

 
 

McCrudden MTC, McLean DTF, Zhou M, Shaw J, Linden GJ, Irwin CR, Lundy FT (2014). The host defence peptide LL-37 is susceptible to proteolytic degradation by wound fluid isolated from foot ulcers of diabetic patients. International Journal of Peptide Research and Therapeutics 20(4):457-464.
Crossref

 
 

Meikle TG, Zabara A, Waddington LJ, Separovic F, Drummond CJ, Conn CE (2017). Incorporation of antimicrobial peptides in nanostructured lipid membrane mimetic bilayer cubosomes. Colloids and Surfaces B: Biointerfaces 152:143-151.
Crossref

 
 

Moncla BJ, Pryke K, Rohan LC, Graebing PW (2011). Degradation of naturally occurring and engineered antimicrobial peptides by proteases. Advances in Bioscience and Biotechnology 2(6):404-408.
Crossref

 
 

Nell MJ, Tjabringa GS, Wafelman AR, Verrijk R, Hiemstra PS, Drijfhout JW, Grote JJ (2006). Development of novel LL-37 derived antimicrobial peptides with LPS and LTA neutralizing and antimicrobial activities for therapeutic application. Peptides 27(4):649-660.
Crossref

 
 

Pfalzgraff A, Brandenburg K, Weindl G (2018). Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Frontiers in Pharmacology 9:281.
Crossref

 
 

Promega Corporation USA (n.d.). CytoTox 96® Non-radioactive cytotoxicity assay instructions for use of product G1780. 

View [Accessed 6 June 2019].

 
 

Ramos R, Silva JP, Rodrigues AC, Costa R, Guardão L, Schmitt F, Soares R, Vilanova M, Domingues L, Gama M (2011). Wound healing activity of the human antimicrobial peptide LL37. Peptides 32(7):1469-1476.
Crossref

 
 

Rooijakkers SHM, van Kessel KPM, van Strijp JAG (2005). Staphylococcal innate immune evasion. Trends in Microbiology 13(12):596-601.
Crossref

 
 

Shai Y (2002). Mode of action of membrane active antimicrobial peptides. Biopolymers 66(4):236-248.
Crossref

 
 

Shin YP, Park HJ, Shin SH, Lee YS, Park S, Jo S, Lee YH, Lee IH (2010). Antimicrobial activity of a halocidin-derived peptide resistant to attacks by proteases. Antimicrobial Agents and Chemotherapy 54(7):2855-2866.
Crossref

 
 

Sieprawska-Lupa M, Mydel P, Krawczyk K, Wójcik K, Puklo M, Lupa B, Suder P, Silberring J, Reed M, Pohl J, Shafer W, McAleese F, Foster T, Travis J, Potempa J (2004). Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrobial Agents and Chemotherapy 48(12):4673-4679.
Crossref

 
 

Song Y, Wu C, Zhang X, Bian W, Liu N, Yin S, Yang MF, Luo M, Tang J, Yang X (2019). A short peptide potentially promotes the healing of skin wound. Bioscience Reports 39(3):BSR20181734.
Crossref

 
 

Steinstraesser L, Koehler T, Jacobsen F, Daigeler A, Goertz O, Langer S, Kesting M, Steinau H, Eriksson E, Hirsch T (2008). Host defense peptides in wound healing. Molecular Medicine 14(7-8):528-537.
Crossref

 
 

Strömstedt AA, Pasupuleti M, Schmidtchen A, Malmsten M (2009). Evaluation of strategies for improving proteolytic resistance of antimicrobial peptides by using variants of EFK17, an internal segment of LL-37. Antimicrobial Agents and Chemotherapy 53(2):593-602.
Crossref

 
 

Svenson J, Brandsdal BO, Stensen W, Svendsen JS (2007). Albumin binding of short cationic antimicrobial micropeptides and its influence on the in vitro bactericidal effect. Journal of Medicinal Chemistry 50(14):3334-3339.
Crossref

 
 

Thwaite JE, Hibbs S, Titball RW, Atkins TP (2006). Proteolytic degradation of human antimicrobial peptide LL-37 by Bacillus anthracis may contribute to virulence. Antimicrobial Agents and Chemotherapy 50(7):2316-2322.
Crossref

 
 

Williamson DA, Carter GP, Howden BP (2017). Current and emerging topical antibacterials and antiseptics: Agents, action, and resistance patterns. Clinical Microbiology Reviews 30(3):827-860.
Crossref

 
 

Xie Z, Aphale NV, Kadapure TD, Wadajkar AS, Orr S, Gyawali D, Qian G, Nguyen KT, Yang J (2015). Design of antimicrobial peptides conjugated biodegradable citric acid derived hydrogels for wound healing. Journal of Biomedical Materials Research 103(12):3907-3918.
Crossref

 
 

Xu L, Shao C, Li G, Shan A, Chou S, Wang J, Ma Q, Dong Na (2020). Conversion of broad-spectrum antimicrobial peptides into species-specific antimicrobials capable of precisely targeting pathogenic bacteria. Scientific Reports 10(1):944.
Crossref

 
 

Yin LM, Edwards MA, Li J, Yip CM, Deber CM (2012). Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide-membrane interactions. Journal of Biological Chemistry 287(10):7738-7745.
Crossref

 
 

Zasloff M (2002). Antimicrobial peptides of multicellular organisms. Nature 415(6870):389-395.
Crossref