Journal of
Plant Breeding and Crop Science

  • Abbreviation: J. Plant Breed. Crop Sci.
  • Language: English
  • ISSN: 2006-9758
  • DOI: 10.5897/JPBCS
  • Start Year: 2009
  • Published Articles: 448

Full Length Research Paper

Evidences that polyploidization and hybridization affected resveratrol content in Arachis interspecific hybrids

Paula Vasconcelos Carvalho
  • Paula Vasconcelos Carvalho
  • Universidade Estadual Paulista (UNESP), Botucatu, Brazil.
  • Google Scholar
Márcio de Carvalho Moretzsohn
  • Márcio de Carvalho Moretzsohn
  • Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, C.P 02372 - 70770-917, Brasília/DF, Brazil.
  • Google Scholar
Ana Cristina Miranda Brasileiro
  • Ana Cristina Miranda Brasileiro
  • Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, C.P 02372 - 70770-917, Brasília/DF, Brazil.
  • Google Scholar
Patrícia Messenberg Guimarães
  • Patrícia Messenberg Guimarães
  • Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, C.P 02372 - 70770-917, Brasília/DF, Brazil.
  • Google Scholar
Tânia da Silveira Agostini Costa
  • Tânia da Silveira Agostini Costa
  • Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, C.P 02372 - 70770-917, Brasília/DF, Brazil.
  • Google Scholar
Joseane Padilha da Silva
  • Joseane Padilha da Silva
  • Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, C.P 02372 - 70770-917, Brasília/DF, Brazil.
  • Google Scholar
Marcos A. Gimenes
  • Marcos A. Gimenes
  • Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, C.P 02372 - 70770-917, Brasília/DF, Brazil.
  • Google Scholar


  •  Received: 19 July 2019
  •  Accepted: 18 October 2019
  •  Published: 31 December 2019

References

Arora D, Jaglan S (2018). Therapeutic applications of resveratrol nanoformulations. Environmental Chemistry Letters 16:35-41.
Crossref

 

Bertioli D, Seijo G, Freitas F, Valls J, Leal-Bertioli S, Moretzsohn M (2011). An overview of peanut and its wild relatives. Plant Genetic Resources 9:134-149.
Crossref

 

Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EKS, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn MC, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth CE, Umale P, Araújo ACG, Kozik A, Kim KD, Burow MD, Varshney RK, Wang X, Zhang X, Barkley N, Guimarães PM, Isobe S, Guo B, Liao B, Stalker HT, Schmitz RJ, Scheffler BE, Leal-Bertioli SCM, Xun X, Jackson SA, Michelmore R, Ozias-Akins P (2016). The genome sequences of Arachis duranensis and Arachis ipaënsis, the diploid ancestors of cultivated peanut. Nature Genetics 48:438-446.
Crossref

 

Burns J, Yokota T, Ashihara H, Lean ME, Crozier A (2002). Plant foods and herbal sources of resveratrol. Journal of Agricultural and Food Chemistry 50:3337-3340.
Crossref

 

Burow MD, Simpson CE, Starr JL, Paterson AH (2001). Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.): Broadening the gene pool of a monophyletic polyploid species. Genetics 159: 823-837.

 

Carvalho PASV, Brasileiro AC, Leal-Bertioli S, Bertioli DJ, Silva JP, Agostini-Costa TS, Gimenes MA (2017). Coupled transcript and metabolite identification: insights on induction and synthesis of resveratrol in peanut, wild relatives and synthetic allotetraploid. Genetics and Molecular Research 16:3.
Crossref

 

Chen RS, Wu PL, Chiou RYY (2002). Peanut roots as a source of resveratrol. Journal of Agricultural and Food Chemistry 50:1665-1667.
Crossref

 

Chung I-M, Park MR, Rehman S, Yun SJ (2001). Tissue specific and inducible expression of resveratrol synthase gene in peanut plants. Molecules and Cells 12:353-359.

 

Colica C, Milanovićb M, Milićb N, Aielloc V, De Lorenzo A, Abenavolie AA (2018). Systematic review on natural antioxidant properties of resveratrol. Natural Product Communications 13:1195-1203.
Crossref

 

D'Amelia V, Aversano R, Chiaiese P, Carputo D (2018). The antioxidant properties of plant flavonoids: their exploitation by molecular plant breeding. Phytochemistry Reviews 17: 611.
Crossref

 

Esteban MA, Villanueva MJ, Lissarrague JR (2001). Effect of irrigation on changes in the anthocyanin composition of the skin of cv Tempranillo (Vitis vinifera L) grape berries during ripening. Journal of the Science of Food and Agriculture 81:409-420.
Crossref

 

Fávero AP, Moraes SAD, Garcia AAF, Valls JFM, Vello NA (2009). Characterization of rust, early and late leaf spot resistance in wild and cultivated peanut germplasm. Scientia Agricola 66: 110-117.
Crossref

 

Fávero AP, Pádua JG, Costa TS, Gimenes MA, Godoy IJ, Moretzsohn MC, Michelotto MD (2015). New hybrids from peanut (Arachis hypogaea L.) and synthetic amphidiploid crosses show promise in increasing pest and disease tolerance. Genetics and Molecular Research 14:16694-16703.
Crossref

 

Fernández A, Krapovickas A (1994). Cromosomas y evolucion en Arachis (Leguminosae). Bonplandia 8:187-220.
Crossref

 

Frankel EN, German JB, Kinsella JE, Parks E, Kanner J (1993). Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. The Lancet 341:454-457.
Crossref

 

Galiniak S, Aebisher D, Bartusik-Aebishe D (2019). Health benefits of resveratrol administration. Acta Biochimica Polonica 66:13-21.
Crossref

 

HouMiao W, Huang J, Lei Y, Yan L, Wang S, Jiang H, Ren X, Lou Q, Liao B (2012). Relationship of resveratrol content and resistance to aflatoxin accumulation caused by Aspergillus flavus in peanut seeds. Acta Agronomica Sinica 38:1875-1883.
Crossref

 

Jeelania SM, Farooqb U, Guptac AP, Lattooa SK (2017). Phytochemical evaluation of major bioactive compounds in different cytotypes of five species of Rumex L. Industrial Crops and Products 109: 897-904.
Crossref

 

Kochert G, Stalker H, Gimenes M, Galgaro L, Lopes C, Moore K (1996). RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut Arachis hypogaea (Leguminosae). American Journal of Botany 83:1282-1291.
Crossref

 

Krapovickas A, Gregory WC (1994). Taxonomia del genero Arachis (Leguminosae). Bonplandia 8:1-186.
Crossref

 

Kim YJ, Silva J, Zhang D, Shi J, Joo SC, Jang M-G , Kwon W-S, Yan D-C (2016). Development of interspecies hybrids to increase ginseng biomass and ginsenoside yield. Plant Cell Report 35:779-790.
Crossref

 

Kumari V, Gowda MVC, Tasiwal V, Pandey MK, Bhat RS, Mallikarjuna N, Upadhyaya HD, Varshney RK (2014). Diversification of primary gene pool through introgression of resistance to foliar diseases from synthetic amphidiploids to cultivated groundnut (Arachis hypogaea L.). The Crop Journal 2:110-119.
Crossref

 

Lanz T, Schröder G, Schröder J (1990). Differential regulation of genes for resveratrol synthase in cell cultures of Arachis hypogaea L. Planta 181:169-175.
Crossref

 

Leal-Bertioli SC, Bertioli DJ, Guimarães PM, Pereira TD, Galhardo I, Silva JP, Brasileiro ACM, Oliveira RS, Silva PIT, Vadez V, Araujo ACG (2012). The effect of tetraploidization of wild Arachis on leaf morphology and other drought-related traits. Environmental and Experimental Botany 84:17-24.
Crossref

 

Leal-Bertioli SC, Moretzsohn MC, Santos SP, Brasileiro AC, Guimarães PM, Bertioli DJ, Araujo ACG (2017). Phenotypic effects of allotetraploidization of wild Arachis and their implications for peanut domestication. American Journal of Botany 104:379-388.
Crossref

 

Lopes RM, Silveira D, Gimenes MA, Vasconcelos PAS, Rosa de Belem NA, Silva JP, da Silveira Agostini-Costa T (2013). Characterization of resveratrol content in ten wild species of section Arachis, genus Arachis. Genetic Resources and Crop Evolution 60:2219-2226.
Crossref

 

Mallikarjuna N, Kranthi KR, Jadhav DR, Kranthi S, Chandra S (2004). Influence of foliar chemical compounds on the development of Spodoptera litura (Fab.) in interspecific derivatives of groundnut. Journal of Applied Entomology 128: 321-328.
Crossref

 

Michelotto MD, Barioni Jr W, de Resende MDV, de Godoy IJ, Leonardecz E, Fávero AP (2015). Identification of fungus resistant wild accessions and interspecific hybrids of the genus Arachis. PloS One 10:0128811.
Crossref

 

Michelotto MD, de Godoy IJ, dos Santos JF, Martins ALM, Leonardecz E, Fávero AP (2016). Identifying amphidiploids resistant to foliar fungal diseases. Crop Science 56:1792-1798.
Crossref

 

Michelotto MD, de Godoy IJ, Pirotta MZ, dos Santos JF, Finoto EL, Fávero AP (2017). Resistance to thrips (Enneothrips flavens) in wild and amphidiploid Arachis species. PloS One 12: 0176811.
Crossref

 

Moraes ARAD, Lourenção AL, Godoy IJD, Teixeira GDC (2005). Infestation by Enneothrips flavens Moulton and yield of peanut cultivars. Scientia Agricola 62:69-472.
Crossref

 

Nautiyal PC, Rajgopal K, Zala PV, Pujari DS, Basu M, Dhadhal BA, Nandre BM (2008). Evaluation of wild Arachis species for abiotic stress tolerance: I. Thermal stress and leaf water relations. Euphytica 159:43-57.
Crossref

 

Pande S, Rao JN (2001). Resistance of wild Arachis species to late leaf spot and rust in greenhouse trials. Plant Disease 85:851-855.
Crossref

 

Peñaloza APS, Valls JFM (2005). Chromosome number and satellite chromosome morphology of eleven species of Arachis (Leguminosae). Bonplandia 14:65-72.
Crossref

 

Potrebko I, Resurreccion AVA (2009). Effect of ultraviolet doses in combined ultraviolet−ultrasound treatments on trans-resveratrol and trans-piceid contents in sliced peanut kernels. Journal of Agricultural and Food Chemistry 57:7750-7756.
Crossref

 

Sanders TH, McMichael RW, Hendrix KW (2000). Occurrence of resveratrol in edible peanuts. Journal of Agricultural and Food Chemistry 48:1243-1246.
Crossref

 

Santos SPD (2013). Produção e caracterização de alotetraploides sintéticos entre espécies silvestres do gênero Arachis. Dissertação de mestrado Universidade de Brasília 89. 

View

 

Simpson CE (1991). Pathways for introgression of pest resistance into Arachis hypogaea L. Peanut Science 18:22-26.
Crossref

 

Smartt J, Gregory WC, Gregory MP (1978). The genomes of Arachis hypogaea. Cytogenetic studies of putative genome donors. Euphytica 27:665-675.
Crossref

 

Sobolev VS, Cole RJ (1999). Trans-Resveratrol content in commercial peanuts and peanut products. Journal of Agricultural and Food Chemistry 47:1435-1439.
Crossref

 

Sobolev VS, Guo BZ, Holbrook CC, Lynch RE (2007). Interrelationship of phytoalexin production and disease resistance in selected peanut genotypes. Journal of Agricultural and Food Chemistry 55:2195-2200.
Crossref

 

Stalker HT, Moss JP (1987). Speciation, citogenetics and utilization of Arachis species. Advances in Agronomy 41:1-40.
Crossref

 

Stalker HT (1984). Utilizing Arachis cardenasii as a source of Cercospora leafspot resistance for peanut improvement. Euphytica 33:529-538.
Crossref

 

Stalker HT (2017). Utilizing wild species for peanut improvement. Crop Science 57:1102-1120.
Crossref

 

Wang SY, Zheng W (2001). Effect of plant growth temperature on antioxidant capacity in strawberry. Journal of Agricultural and Food Chemistry 49:4977-4982.
Crossref

 

Wang ML, Pittman RN (2009). Resveratrol content in seeds of peanut germplasm quantified by HPLC. Plant Genetic Resources 7:80-83.
Crossref

 

Zorzete P, Reis TA, Felicio JD, Baquião AC, Makimoto P, Corrêa B (2011). Fungi, mycotoxins and phytoalexin in peanut varieties, during plant growth in the field. Food Chemistry 129:957-964.
Crossref

 

Yang L, Wen K-S, Ruan X, Zhao Y-X, Wei F, Wang Q (2018). Response of Plant Secondary Metabolites to Environmental Factors. Molecules 23:762.
Crossref