Scientific Research and Essays

  • Abbreviation: Sci. Res. Essays
  • Language: English
  • ISSN: 1992-2248
  • DOI: 10.5897/SRE
  • Start Year: 2006
  • Published Articles: 2768

Full Length Research Paper

A Novel SPICE compatible behavioral model for molecular electronics having hysteresis effects

Bahrepour, Davoud
  • Bahrepour, Davoud
  • Mashhad Branch, Islamic Azad University, Mashhad, Iran.
  • Google Scholar
Sharifi, Mohammad Javad
  • Sharifi, Mohammad Javad
  • Faculty of Electrical and Computer Engineering, Shahid Beheshti University, Tehran, Iran.
  • Google Scholar


  •  Received: 02 April 2012
  •  Published: 30 March 2014

References

Bhattacharya M, Mazumder P (2001). Augmentation of SPICE for simulation of circuits containing resonant tunneling diodes. IEEE Trans. Computer-Aided Des., 20(1):39-50.
 
Gimenez AJ, Luna-Barcenas G, Seminario JM (2009). Analysis of nano and molecular arrays of negative differential resistance devices for sensing and electronics. Sensors J. 9(9):1136-1141.
Crossref
 
Lei C, Pamunuwa D, Bailey S, Lambert C (2007). Molecular Electronics Device Modeling for System Design. IEEE International Conference on Nanotechnology, Hong Kong, Aug. pp. 1116-1119.
 
Lei C, Pamunuwa D, Bailey S, Lambert C (2008). Application of Molecular Electronics Devices in Digital Circuit Design. Third International Conference on Nano-Networks, pp. 60-64.
 
Liu YS, Hong XK, Feng JF, Yang XF (2011). Fano-Rashba effect in thermoelectricity of a double quantum dot molecular junction. Nanoscale Res. Lett. 6:618–628.
Crossref
 
Lüssem B (2006). Molecular Electronic Building Blocks Based on Self-Assembled Monolayers. Forschungszentrum Jülich GmbH.
 
Martin ZL, Majumdar N, Cabral MJ, Gergel-Hackett N, Camacho-Alanis F, Swami N, Bean JC, Harriott LR, Yao Y, Tour JM, Long D, Shashidhar R (2009). Fabrication and Characterization of Interconnected Nanowell Molecular Electronic Devices in Crossbar Architecture. IEEE Trans. Nanotechnol. 8(5):574-581.
Crossref
 
Mielke A, Roubicek T (2003). A Rate-Independent Model for Inelastic Behavior of Shape-Memory Alloys. Multiscale Model. Simul. 1(4):571-597.
Crossref
 
Rose GS, Stan MR (2007). A programmable majority logic array using molecular scale electronics. IEEE Trans. Circuits Syst. I, 54(11):2380–2390.
Crossref
 
Rose GS, Ziegler MM, Stan MR (2004). Large-signal two-terminal device model for nanoelectronic circuit analysis. IEEE Trans. Very Large Scale Integration (VLSI) Systems, 12(11):1201-1208.
 
Seminario JM (2005). Molecular electronics: approaching reality. Nature Mater, 4:111-113.
Crossref
 
Sharifi MJ, Banadaki YM (2010). General spice models for memristor and application to circuit simulation of memristor-based synapses and memory cells. World Sci. J. Circuits Syst. Comput. 19:407-424.
Crossref
 
Sharifi MJ, Bahrepour D (2009). A new XOR structure based on resonant-tunneling high electron mobility transistor. VLSI Design, 2009.
 
Stan MR, Franzon PD, Goldstein SC, Lach JC, Ziegler MM (2003). Molecular electronics: From devices and interconnect to circuits and architecture. Proceedings of the IEEE, 91(11):1940-1957.
Crossref
 
Strukov DB, Likharev KK (2005). CMOL FPGA: A reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotechnol. 16:888-900.
Crossref
 
Yan Z, Deer MJ (1995). New RTD large-signal DC suitable for PSPICE. IEEE Trans. Computer Aided Des. 14(2):167-172.
Crossref
 
Yu YS, Jung YI, Park JH, Hwang SW, Ahn D (1999). Simulation of single-electron/CMOS hybrid circuits using SPICE macromodeling. J. Korean Phys. Soc. 20(35):S991-S994.
 
Yuqing X, Changfeng F, Bin C, Guomin J, Yaxin Z, Desheng L (2011). Gated electronic currents modulation and designs of logic gates with single molecular field effect transistors. Appl. Phys. Lett. 99:043304-043304.
Crossref
 
Ziegler MM, Rose G, Stan M (2002). A universal device model for nanoelectronic circuit simulation. IEEE Conf. Nanotechnol, pp. 83-88.
 
Ziegler MM, Stan MR (2003). CMOS/nano co-design for crossbar-based molecular electronic systems. IEEE Trans. Nanotechnol. 2(4):217-230.
Crossref