African Journal of
Microbiology Research

  • Abbreviation: Afr. J. Microbiol. Res.
  • Language: English
  • ISSN: 1996-0808
  • DOI: 10.5897/AJMR
  • Start Year: 2007
  • Published Articles: 5233

Full Length Research Paper

Effect of nutritional parameters and NaCl concentration on phosphate solubilization potential of Penicillium purpurogenum Stoll isolated from paddy field

Anju Verma*
  • Anju Verma*
  • School of Studies in Life Sciences, Pt. Ravishankar Shukla University, Raipur-492010, India.
  • Google Scholar
Amia Ekka
  • Amia Ekka
  • School of Studies in Life Sciences, Pt. Ravishankar Shukla University, Raipur-492010, India.
  • Google Scholar


  •  Received: 23 November 2016
  •  Accepted: 26 January 2017
  •  Published: 28 February 2017

References

Abd Alla MH, (1994). Phosphatases and the utilization of organic phosphorus by Rhizobium leguminosarum biovar viceae. Lett. Appl. Microbiol. 18:294-296.
Crossref

 

Aneja KR (2003). Experiment in microbiology, plant pathology and biotechnology. 4th ed. New Age International Publisher (P) Limited, New Delhi, India. pp. 213-214.

 

APHA (1999). Standard methods for the examination of water and wastewater. 21th ed. American Public Health Association, Washington, DC, USA.

 

Asea PEA, Kucey RMN, Stewart JWB (1988). Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biol. Biochem. 20:459-464.
Crossref

 

Atlas R, Bartha R (1997). Microbial Ecology. Addison Wesley Longman, New York.

 

Bhattacharya S, Das A, Bhardwaj S, Rajan SS (2015). Phosphate solubilizing potential of Aspergillus niger MPF-8 isolated from Muthupettai mangrove. J. Sci. Ind. Res. 74:499-503.

 

Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006). Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate abilities. Appl. Soil. Ecol. 34:33-41.
Crossref

 

Cunningham JE, Kuiack C (1992). Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii. Appl. Environ. Microbiol. 52:1451-1458.

 

El-Badry MA, Elbarbary TA, Ibrahim IA, Abdel-Fatah YM (2016). Evaluation and optimization of Abu Tartur Egyptian phosphate ore dissolution. Int. J. Innov. Sci. Eng. Technol. 3:386-412.

 

Gadd GM (1999). Fungal production of citric and oxalic acid: important in metal speciation, physiology and biogeochemical processes. Adv. Microbial. Physiol. 41:47-92.
Crossref

 

Gaur AC, Sacher S (1980). Effect of rock phosphate and glucose concentration on phosphate solubilization by Aspergillus awamori. Curr. Sci. 49:553-554.

 

Goldstein AH (1986). Bacterial solubilization of mineral phosphates: historical perspectives and future prospects. Am. J. Altern. Agric. 1:51-57.
Crossref

 

Gupta N, Sabat J Parida R, Kerkatta D (2007). Solubilization of tricalcium phosphate and rock phosphate by microbes isolated from chromite, iron and manganese mines. Acta Bot. Croat. 66:197-204.

 

Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002). Role of soil microorganisms in improving phosphrus nutrition of plants. Plant Soil 245:83-93.
Crossref

 

Hameeda B, Harini G, Rupela OP, Wani SP, Reddy G (2008). Growth promotion of maize by phosphate solubilizing bacteria isolated from compost and microfauna. Microbiol. Res. 163:234-242.
Crossref

 

Illmer P, Schinner F (1992). Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol. Biochem. 24:389-395.
Crossref

 

Illmer P, Schinner F (1995). Solubilization of inorganic calcium phosphates-solubilization mechanisms. Soil Biol. Biochem. 27:257-263.
Crossref

 

Kang SC, Ha CG, Lee TG, Maheshwari DK (2002). Soluibilization of insoluble inorganic phosphate by a soil-inhabiting fungus Fomitopsis sp. PS 102. Curr. Sci. 82:439-442.

 

Khan MS, Zaidi A, Wani PA (2007). Role of phosphate solubilizing microorganisms in sustainable agriculture- a review. Agron. Sustain. Dev. 27:29-43.
Crossref

 

Kpomblekou K, Tabatabai MA (1994). Effect of organic acids on release of phosphate rocks. Soil Sci. 158:442-432.
Crossref

 

Kucey RMN, Janzen HH, Legget ME (1989). Microbial mediated increases in plant available phosphorus. Adv. Agron. 42:199-288.
Crossref

 

Mahamuni SV, Wani PV, Patil AS (2012). Isolation of phosphate solubilizing fungi from rhizosphere of sugarcane and sugar TCP and RP solubilization. Asian J. Biochem. Pharm. Res. 1:237-244.

 

Mendes GO, Freitas ALM, Pereira OL, Silva IR, Vassilev NB, Costa MD (2014). Mechanisms of phosphate solubilization by fungal isolates when exposed to different P sources. Ann. Microbiol. 64(1):239-249.
Crossref

 

Mussarat J, Khan MS (2014). Factors affecting phosphate solubilizing activity of microbes: current status. In. Khan MS, Zaidi A, Mussarat J (eds) Phosphate solubilizing microorganisms: principles and application of microphos technology. Springer, Switzerland. pp. 63-85.
Crossref

 

Nahas E (1996). Factors determining rock phosphate solubilization by microorganisms isolated from soil. World J. Microbiol. Biotechnol. 12:567-572.
Crossref

 

Nautiyal CS (1999). An efficient microbiological grown medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170:265-270.
Crossref

 

Nautiyal CS, Bhaduria S, Kumar P, Lal H, Mandal R, Verma D (2000). Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol. Lett. 182:291-296.
Crossref

 

Nielsen J, Johansen CL, Villadsen J (1994). Culture fluorescence measurements during batch and fed-batch cultivation with Penicillium chrysogenum. J. Biotechnol. 38:52-62.
Crossref

 

Omar SA (1998). The role of rock phosphate solubilizing fungi and vesicular arbuscular mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World J. Microbiol. Biotecnol. 14:211-219.
Crossref

 

Osorio NW, Habte M, Leon JD (2015). Effectiveness of a rock phosphate solubilizing fungus to increase soil solution phosphate impaired by the soil phosphate sorption capacity. Rev. Fac. Nal. Agr. 68:7627-7636.
Crossref

 

Panda R, Panda SP, Kar RN, Panda CR (2008). Influence of environmental factors and salinity on phosphate solubilization by Aspergillus niger PSF4 from marine sediment. e-planet 9:1-7.

 

Posada RH, Heredia-Abarca G, Sieverding E, De Prager MS (2013). Solubilization of iron and calcium phosphates by soil fungi isolated from coffee plantations. Arch. Agron. Soil Sci. 59:185-196.
Crossref

 

Pradhan N, Shukla LB (2005). Solubilization of inorganic phosphates by fungi isolated from agriculture soil. Afr. J. Biotechnol. 5:850-854.

 

Premono ME, Moawad AM, Vlek PLG (1996). Effect of phosphate-solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere. Indonesian. J. Crop Sci. 11:13-23.

 

Relwani L, Krishna P, Reddy MS (2008). Effect of carbon and nitrogen sources on phosphate solubilization by a wild-type strain and UV-induced mutants of Aspergillus tubingensis. Curr. Microbiol. 57:401-406.
Crossref

 

Reyes I, Bernier L, Simard RR, Antoun H (1999). Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants. FEMS Microbiol. Ecol. 28:281-290.
Crossref

 

Roos W, Luckener K (1994). Relationship between proton extrusion and fluxes of ammonium ions and organic acids in Penicillium cyclopium. J. Gen. Microbiol. 130:1007-1014.

 

Rosado AS, de Azevedo FS, da Cruz DW, van Elsasand JD, Seldin L (1998). Phenotypic and genetic diversity of Paenibacillus azotofixans strains isolated from the rhizoplane or rhizosphere soil of different grasses. J. Appl. Microbiol. 84:216-226.
Crossref

 

Rose RE (1957). Techniques for determining the effect of microorganisms on insoluble inorganic phosphates. NZ J. Sci. Technol. 38:773-780.

 

Saber WIA, Ghanem KM, El Hersh MS (2009). Rock phosphate solubilization by two isolates of Aspergillus niger and Penicillium sp. and their promotion to mungbean plants. Res. J. Microbiol. 4:235-250.
Crossref

 

Sane SA, Mehta SK (2015). Isolation and evaluation of rock phosphate solubilizing fungi as potential biofertilizer. J. Biofertil. Biopestici. 6:156.
Crossref

 

Scervino JM, Mesa MP, Monica ID, Recchi M, Moreno NS, Godeas A (2010). Soil fungi isolates produced different organic acid patterns involved in phosphate salts solubilization. Biol. Fertil. Soils 46:755-763.
Crossref

 

Seshadri S, Ignacimuthu S, Lakshminarasimhan C (2004). Effect of nitrogen and carbon sources on the inorganic phosphate solubilization by different Aspergillus niger strains. Chem. Eng. Commun. 191:1043-1052.
Crossref

 

Srividya S, Soumya S, Pooja K (2009). Influence of environmental factors and salinity on phosphate solubilization by a newly isolated Aspergillus niger F7 from agricultural soil. Afr. J. Biotechnol. 8:1864-1870.

 

Vassilev N, Fenice M, Federici F (1996). Rock phosphate solubilization with gluconic acid produced by immobilized Penicillium variable P16. Biotechnol. Tech. 10:585-588.
Crossref

 

Xiao C, Chi R, Li X, Xia M, Xia Z (2011). Biosolubilization of rock phosphate by three stress tolerant fungal strains. Appl. Biochem. Biotechnol. 165:719-727.
Crossref

 

Xiao CQ, Chib RA, Huang XH Zhang WX, Qiu GZ, Wang DZ (2008). Optimization of rock phosphate solubilization by phosphate-solubilizing fungi isolated from phosphate mines. Ecol. Eng. 33:187-193.
Crossref

 

Yadav BK, Tarafdar JC (2011). Penicillium purpurogenum a unique P mobilize in arid agro-ecosystems. Arid Land Res. Manage. 25:87-99.
Crossref

 

Yadav J, Verma JP, Tiwari KN (2011). Solubilization of tricalcium phosphate by fungus Aspergillus niger at different carbon source and salinity. Trends Appl. Sci. Res. 6:606-613.
Crossref

 

Yadav J, Verma JP, Yadav SK, Tiwari KN (2010). Effect of salt concentration and pH on soil inhabiting fungus Penicillium citrinum Thom. for solubilization of tricalcium phosphate. Microbiol. J. 72:625-630.

 

Yasser MM, Mousa AS, Massoud ON, Nasr SH (2014). Solubilization of inorganic phosphate by phosphate solubilizing fungi isolated from Egyptian soils. J. Biol. Earth Sci. 4:B83-B90.