African Journal of
Pharmacy and Pharmacology

  • Abbreviation: Afr. J. Pharm. Pharmacol.
  • Language: English
  • ISSN: 1996-0816
  • DOI: 10.5897/AJPP
  • Start Year: 2007
  • Published Articles: 2288

Full Length Research Paper

Designing polyethylene oxide and hydroxypropyl methylcellulose matrix tablets with comparable dissolution properties

Petra Draksler
  • Petra Draksler
  • Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, AÅ¡kerčeva cesta 7, 1000 Ljubljana, Slovenia.
  • Google Scholar
Biljana Janković
  • Biljana Janković
  • Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, AÅ¡kerčeva cesta 7, 1000 Ljubljana, Slovenia.
  • Google Scholar


  •  Received: 08 March 2020
  •  Accepted: 07 May 2020
  •  Published: 31 May 2020

References

Aharony A, Stauffer D (2003). Introduction to percolation theory. Revised ed. London: Taylor & Francis.
Crossref

 

Bonny JD, Leuenberger H (1991). Matrix type controlled release systems: I. Effect of percolation on drug dissolution kinetics. Pharmaceutica Acta Helvetiae 66(5-6):160-164.

 

Bonny JD, Leuenberger H (1993). Matrix type controlled release systems II. Percolation effects in non-swellable matrices. Pharmaceutica Acta Helvetiae 68(1):25-33.
Crossref

 

Caraballo I (2010). Factors affecting drug release from hydroxypropyl methylcellulose matrix systems in the light of classical and percolation theories. Expert Opinion on Drug Delivery 7(11):1291-1301. 
Crossref

 

Choi DH, Lim JY, Shin S, Choi WJ, Jeong SH, Lee S (2014). A novel experimental design method to optimize hydrophilic matrix formulations with drug release profiles and mechanical properties. Journal of Pharmaceutical Sciences 103(10):3083-3094. 
Crossref

 

Choi SU, Lee J, Choi YW (2003). Development of a directly compressible poly(ethylene oxide) matrix for the sustained-release of dihydrocodeine bitartrate. Drug Development and Industrial Pharmacy 29(10):1045-1052. 
Crossref

 

Colocon (2009) POLYOXTM. 

View

 

Colombo P, Bettini R, Santi P, Peppas NA (2000). Swellable matrices for controlled drug delivery: gel-layer behavithe, mechanisms and optimal performance. Pharmaceutical Science and Technology Today 3(6):198-204. 
Crossref

 

Dhawan S, Varma M, Sinha VR (2005). High molecular weight poly(ethylene oxide)-based drug delivery systems- part I : hydrogels and hydrophilic matrix systems. Pharmaceutical Technology 29:72-74, 76-80.

 

Ganji F, Vasheghani-Farahani E (2009). Hydrogels in controlled drug delivery systems. Iranian Polymer Journal 18(1):63-88.

 

Gonçalves-Araújo T, Rajabi-Siahboomi AR, Caraballo I (2008). Application of percolation theory in the study of an extended release verapamil hydrochloride formulation. International Journal of Pharmaceutics 361(1):112-117. 
Crossref

 

Gupta CR, Kishore GK, Ratna JV (2013). Development and evaluation of aceclofenac matrix tablets using polyethylene oxides as sustained release polymers. Journal of Pharmacy Research 6(2):249-254. 
Crossref

 

Hammouda B, Ho DL. Kline S (2004). Insight into clustering in poly(ethylene oxide) solutions. Macromolecules 37(18):6932-6937. 
Crossref

 

Harland RS, Gazzaniga A, Sangalli ME, Colombo P, Peppas NA (1988). Drug/polymer matrix swelling and dissolution. Pharmaceutical Research 5(8):488-494. 
Crossref

 

Hewlett KO, L'Hote-Gaston J, Radler M, Shull KR (2012). Direct measurement of the time-dependent mechanical response of HPMC and PEO compacts during swelling. International Journal of Pharmaceutics 434(1):494-501. 
Crossref

 

Ho DL., Hammouda B, Kline SR (2002). Clustering of poly(ethylene oxide) in water revisited. Journal of Polymer Science, Part B: Polymer Physics 41:135-138.
Crossref

 

Hribar M, Jakasanovski O, Trontelj J, Grabnar I, Legen I (2018). Determining the pressure-generating capacity of the classical and alternative in vitro dissolution methods using a wireless motility capsule. Journal of Pharmaceutical Innovation 13(3):226-236. 
Crossref

 

Hu A, Chen C, Mantle MD, Wolf B, Gladden LF, Rajabi-Siahboomi A, Missaghi S, Mason L, Melia CD (2017). The properties of HPMC:PEO extended release hydrophilic matrices and their response to ionic environments. Pharmaceutical Research 34(5):941-956. 
Crossref

 

Colorocon (2009). Investigation of the effects of hydro-alcoholic media on rheological and textural properties of various grades of hypromellose (HPMC). 

View

 

Jamzad S, Tutunji L, Fassihi R (2005). Analysis of macromolecular changes and drug release from hydrophilic matrix systems. International Journal of Pharmaceutics 292(1-2):75-85. 
Crossref

 

Joshi SC (2011). Sol-gel behavior of hydroxypropyl methylcellulose (HPMC) in ionic media including drug release. Materials 4(10):1861-1905. 
Crossref

 

Katakam P, Padala NR, Chandu BR, Elfituri A, Adiki SK, Kommu R (2013). Design of lamivudine XR matrix tablets: Influence of HPMC and PEO on in vitro drug release and bioavailability in rabbits. Journal of Pharmacy Research 6(8):845-852. 
Crossref

 

Kaunisto E, Abrahmsen-Alami S, Borgquist P, Larsson A, Nilsson B, Axelsson A (2010). A mechanistic modelling approach to polymer dissolution using magnetic resonance microimaging. Journal of Controlled Release 147(2):232-241. 
Crossref

 

Kim C (1995a). Compressed donut-shaped tablets with zero-order release kinetics. Pharmaceutical Research 12(7):1045-1048. 
Crossref

 

Kim CJ (1995b). Drug release from compressed hydrophilic POLYOX-WSR tablets. Journal of Pharmaceutical Sciences 84(3):303-306. 
Crossref

 

Kim CJ (1998). Effects of drug solubility, drug loading, and polymer molecular weight on drug release from Polyox tablets. Drug development and Industrial Pharmacy 24(7):645-651.
Crossref

 

Klančar U, Markun B, Baumgartner S, Legen I (2013). A novel beads-based dissolution method for the in vitro evaluation of extended release HPMC matrix tablets and the correlation with the in vivo data. The AAPS Journal 15(1):267-277. 
Crossref

 

Klein S, Rudolph MW, Skalsky B, Petereit HU, Dressman JB (2008). Use of the BioDis to generate a physiologically relevant IVIVC. Journal of Controlled Release 130(3):216-219. 
Crossref

 

Koeppe MO, Cristofoletti R, Fernandes EF, Storpirtis S, Junginger HE, Kopp S, Midha KK, Shah VP, Stavchansky S, Dressman JB, Barends DM (2011). Biowaiver monographs for immediate release solid oral dosage forms: Levofloxacin. Journal of Pharmaceutical Sciences 100(5):1628-1636. 
Crossref

 

Kojima H, Yoshihara K, Sawada T, Kondo H, Sako K (2008). Extended release of a large amount of highly water-soluble diltiazem hydrochloride by utilizing counter polymer in polyethylene oxides (PEO)/polyethylene glycol (PEG) matrix tablets. European Journal of Pharmaceutics and Biopharmaceutics 70(2):556-562. 
Crossref

 

Körner A, Larsson A, Piculell L, Wittgren B (2005). Tuning the polymer release from hydrophilic matrix tablets by mixing short and long matrix polymers. Journal of Pharmaceutical Sciences 94(4):759-769. 
Crossref

 

Körner A, Larsson A, Andersson A, Piculell L (2010). Swelling and polymer erosion for poly(ethylene oxide) tablets of different molecular weights polydispersities. Journal of Pharmaceutical Sciences 99(3):1225-1238. 
Crossref

 

Kostewicz ES, Abrahamsson B, Brewster M, Brouwers J, Butler J, Carlert S, Dickinson PA, Dressman J, Holm R, Klein S, Mann J, McAllister M, Minekus M, Muenster U, Müllertz A, Verwei M, Vertzoni M, Weitschies W, Augustijns P (2014). In vitro models for the prediction of in vivo performance of oral dosage forms. European Journal of Pharmaceutical Sciences 57:342-366. 
Crossref

 

Leu R, Leuenberger H (1993). The application of percolation theory to the compaction of pharmaceutical powders. International Journal of Pharmaceutics 90(3):213-219. 
Crossref

 

Li H, Hardy RJ, Gu X (2008). Effect of drug solubility on polymer hydration and drug dissolution from polyethylene oxide (PEO) matrix tablets. AAPS PharmSciTech 9(2):437-443. 
Crossref

 

Lu Y, Kim S, Park K (2011). In vitro-in vivo correlation: Perspectives on model development. International Journal of Pharmaceutics 418(1):142-148. 
Crossref

 

Maggi L, Segale L, Torre ML, Ochoa Machiste E, Conte U (2002). Dissolution behavithe of hydrophilic matrix tablets containing two different polyethylene oxides (PEOs) for the controlled release of a water-soluble drug. Dimensionality study. Biomaterials 23:1113-1119. 
Crossref

 

Maggi L, Bruni R, Conte U (2000). High molecular weight polyethylene oxides (PEOs) as an alternative to HPMC in controlled release dosage forms. International Journal of Pharmaceutics 195(1-2):229-238. 
Crossref

 

Mastropietro David J, Muppalaneni S, Kariman A, Omidian H (2013). Shear-thinning rheology of the abuse-deterrent dosage form extracts. Journal of Developing Drugs 2(3):1-3. 
Crossref

 

McAllister M (2010). Dynamic Dissolution: A Step Closer to Predictive Dissolution Testing?. Molecular Pharmaceutics 7(5):1374-1387. 
Crossref

 

Milanowski B, Hejduk A, Marek A Bawiec MA, Jakubowska E, UrbaÅ„ska A, WiÅ›niewska A, Garbacz G, Lulek J (2020). Biorelevant in vitro release testing and in vivo study of extended-release niacin hydrophilic matrix tablets. AAPS PharmSciTech 21(3):83. 
Crossref

 

Miranda A, Millán M, Caraballo I (2006). Study of the critical points of HPMC hydrophilic matrices for controlled drug delivery. International Journal of Pharmaceutics 311(1):75-81. 
Crossref

 

Moodley K, Pillay V, Choonara YE, du Toit LC, Ndesendo VMK, Kumar P, Cooppan S, Bawa P (2012). Oral drug delivery systems comprising altered geometric configurations for controlled drug delivery. International Journal of Molecular Sciences 13(1):18-43.
Crossref

 

Mu X, Tobyn MJ, Staniforth JN (2003). Development and evaluation of bio-dissolution systems capable of detecting the food effect on a polysaccharide-based matrix system. Journal of Controlled Release 93(3):309-318. 
Crossref

 

Narasimhan B (2001). Mathematical models describing polymer dissolution : consequences for drug delivery. Advanced Drug Delivery Reviews 48(2-3):195-210. 
Crossref

 

Park JS, Shim JY, Nguyen KVT, Park JS, Shin S, Choi YW, Lee J, Yoon JH, Jeong SH (2010). A pharma-robust design method to investigate the effect of PEG and PEO on matrix tablets. International Journal of Pharmaceutics 393(1-2):79-87.
Crossref

 

POLYOX TM water soluble resins combining flexibility with consistency (2013). 

View

 

Reynolds TD, Gehrke SH, Ajaz SH, Shenouda LS, Hussain AS, Shenouda LS (1998). Polymer erosion and drug release characterization of hydroxypropyl methylcellulose matrices. Journal of Pharmaceutical Sciences 87(9):1115-1123. 
Crossref

 

Rohrs BR, Burch-Clark DL, Witt MJ, Stelzer DJ (1995). USP Dissolution Apparatus 3 (Reciprocating Cylinder): Instrument Parameter Effects on Drug Release from Sustained Release Formulations. Journal of Pharmaceutical Sciences 84(8):922-926. 
Crossref

 

Schneider F, Beeck R, Hoppe M, Koziolek M, Weitschies W (2017). In vitro simulation of realistic gastric pressure profiles. European Journal of Pharmaceutical Sciences 107:71-77. 
Crossref

 

Siepmann J, Peppas NA (2012). Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Advanced Drug Delivery Reviews 64:163-174. 
Crossref

 

Siepmann J, Peppas NA (2000). Hydrophilic matrices for controlled drug delivery: An improved mathematical model to predict the resulting drug release kinetics (the "sequential layer'' model). Pharmaceutical Research 17(10):1290-1298. 
Crossref

 

Tajarobi F, Abrahmsén-Alami S, Hansen M, Larsson A (2009). The impact of dose and solubility of additives on the release from HPMC matrix tablets - identifying critical conditions. Pharmaceutical Research 26(6):1496-1503. 
Crossref

 

Tajiri T, Morita S, Sakamoto R, Suzuki M, Yamanashi S, Ozaki Y, Kitamura S (2010). Release mechanisms of acetaminophen from polyethylene oxide/polyethylene glycol matrix tablets utilizing magnetic resonance imaging. International Journal of Pharmaceutics 395(1-2):147-153. 
Crossref

 

Timmins P, Pygall SR, Melia CD (2014). Hydrophilic matrix tablets for oral controlled release 16th ed. AAPS Advances in Pharmaceutical Sciences Series. 
Crossref

 

Trotzig C, Abrahmsén-Alami S, Maurer FHJ (2007). Structure and mobility in water plasticized poly(ethylene oxide). Polymer 48(11):3294-3305. 
Crossref

 

Rockville, MD: United States Pharmacopeial Convention (2016). 

 

Viriden A, Larsson A, Wittgren B (2010). The effect of substitution pattern of HPMC on polymer release from matrix tablets. International Journal of Pharmaceutics 389(1-2):147-156. 
Crossref

 

Wang L, Chen K, Wen H, Ouyang D, Li X, Gao Y, Pan W, Yang X (2017). Design and evaluation of hydrophilic matrix system containing polyethylene oxides for the zero-order controlled delivery of water-insoluble drugs. AAPS PharmSciTech 18(1):82-92. 
Crossref

 

Wen H, Li X, Li Y, Wang H, Wang Y, Wang T, Pan W, Yang X (2018). In vitro and in vivo evaluation of controlled-release matrix tablets of highly water-soluble drug applying different mw polyethylene oxides (PEO) as retardants. Drug Development and Industrial Pharmacy 44(4):544-552. 
Crossref

 

Wu N, Wang LS, Tan DCW, Moochhala SM, Yang YY (2005). Mathematical modeling and in vitro study of controlled drug release via a highly swellable and dissoluble polymer matrix: polyethylene oxide with high molecular weights. Journal of Controlled Release 102(3):569-581. 
Crossref