Journal of
Brewing and Distilling

  • Abbreviation: J. Brew. Distilling
  • Language: English
  • ISSN: 2141-2197
  • DOI: 10.5897/JBD
  • Start Year: 2010
  • Published Articles: 30

Full Length Research Paper

Application of high gravity fermentation worts to the brewing of industrial opaque beer

Misihairabgwi, Jane M.
  • Misihairabgwi, Jane M.
  • Department of Biochemistry, School of Medicine, University of Namibia, Namibia.
  • Google Scholar
Kudita, Ivy
  • Kudita, Ivy
  • Chibuku Breweries, P. O. Box 3304, Southerton, Harare, Zimbabwe.
  • Google Scholar
Zvauya, Remigio
  • Zvauya, Remigio
  • Medical School, University of Birmingham, Edgbaston B15 2TT, Birmingham, England.
  • Google Scholar

  •  Received: 20 November 2014
  •  Accepted: 20 March 2015
  •  Published: 30 April 2015


Betite VC, Junior MM, de Oliveira JE, Ernades JR (2012). Very high gravity sucrose fermentation by Brazilian industrial yeast strains: effect of nitrogen supplementation. J. Inst. Brew. 118:174-178.


Bvochora JM, Zvauya R (2001). Biochemical changes occurring during the application of high gravity fermentation technology to the brewing of Zimbabwean traditional opaque beer. Process Biochem. 37: 365-370.



Casey G, Magnus CA, Ingledew WM (1984). High Gravity Brewing: Effects of nutrition on yeast composition, fermentative ability, and alcohol production. Appl. Environ. Microbiol. 48(3): 639-646.



Cooper DJ, Stewart GG, Bryce JH (1998). Some reasons why high gravity brewing has a negative effect on head retention. J. Inst. Brew. 104: 83-87.



Dragone G, Mussatto SI, Almeida e Siva JB (2007). High gravity brewing by continuous process using immobilised yeast: Effect of wort original gravity on fermentation performance. J. Inst. Brew. 113 (4):391-398.



Erten H, Tanguler H, Cakiroz H (2007). The effect of pitching rate on fermentation and flavour compounds in high gravity brewing. J. Inst. Brew. 113(1):75-79.



Fernandez S, Machuca N, Gonzalez MG, Sierra JA (1985). Accelerated fermentation of high gravity worts and its effect on yeast performance. J. Am. Soc. Brew. Chem. 43:109-113.



Kutyauripo J, Parawira W, Tinofa S, Kudita I, Ndengu C (2009). Investigation of the shelf-life extension of sorghum beer (Chibuku) by removing the second conversion of malt. Int. J. Food Microbiol. 129:271-276.



Mathias TR, Moretzsohn de Mello PP, Servulo EF (2014). Nitrogen compounds in brewing wort and beer: A review. J. Brew. Distilling 5(2): 10-17.



Patkova J, Smogrovicova D, Domey Z, Bafrncova P (2000). Very high gravity fermentation by immobilised yeast. Biotechnol. Lett. 22:1173-1177.



Puligundla P, Smogrovicova D, Obulam VSR, Ko S (2011). Very high gravity (VHG) ethanolic brewing and fermentation: a research update. J. Ind. Microbiol. Biotechnol. 38:1133-1144.



Steinkraus KH (1996). Handbook of Indigenous Fermented Foods. 2nd edition, Marcel Dekker, New York.



Thomas KC, Hynes SH, Ingledew WM (2002). Influence of medium buffering capacity on inhibition of Saccharomyces cerevisiae growth by acetic and lactic acids. Appl. Environ. Microbiol. 68(4):1616-1623.



Togo CA, Feresu SB, Mutukumira AN (2002). Identification of lactic acid bacteria isolated from opaque beer (Chibuku) for potential use as a starter culture. J. Food Technol. Afr. 7(3):93-97.



Younis OS, Stewart GG (1999). Effect of malt wort, very high gravity malt wort, and very high gravity adjunct on volatile production in Saccharomyces cerevisiae. J. Am. Soc. Brew. Chem. 57:39-45.